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Introduction : Euler’s equation for compressible fluids

A Lagrangian :

L =

∫
Ωt

(
ρ |u|2

2
− ρe(ρ)

)
dΩt

A differential constraint :

ρt + div(ρu) = 0

=⇒ The corresponding Euler-Lagrange equation:

(ρu)t + div (ρu⊗ u + p(ρ)) = 0; p(ρ) = ρ2e ′(ρ)
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Dispersive models in mechanics

1 Surface waves with surface tension [Nikolayev, Gavrilyuk,
Gouin 2006] :

L(u, h,∇h) =

∫
Ωt

(
h |u|2

2
− gh2

2
− σ |∇h|

2

2

)
dΩt

2 Shallow water equations described by Serre-Green-Naghdi
equations [Salmon (1998)]:

L(u, h, ḣ) =

∫
Ωt

(
hu2

2
− gh2

2
+

hḣ2

6

)
dΩt
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Euler-Korteweg-Van Der Waals type systems

L =

∫
Ωt

L(u, ρ,∇ρ) dΩt =

∫
Ωt

(
ρ |u|2

2
− ρe(ρ)− K (ρ)

|∇ρ|2

2

)
dΩt

{
∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = ρ∇
(
K (ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)
K (h) = σ : constant capillarity

∂t(hu) + div(hu⊗ u) +∇p(h) = σh∇ (∆h)

K (ρ) = 1
4ρ : Quantum capillarity / DNLS equation

∂t(ρu) + div(ρu⊗ u + 1
4ρ∇ρ⊗∇ρ) +∇

(
ρ2

2 −
1
4 ∆ρ

)
= 0
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Euler-Korteweg type systems

{
∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = ρ∇

(
K (ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)
Ph.D Objective ⇒ Make it first order hyperbolic !

Hyperbolic equations Í

Wave-like behaviour.

perturbations propagate at finite speeds.

Mathematically well-posed equations.
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The Non-Linear Schrödinger equation

iεψt +
ε2

2
∆ψ − f

(
|ψ|2

)
ψ = 0 ; ε =

~
m

A wide range of applications: Nonlinear optics, quantum
fluids, surface gravity waves.

The 1d-equation is completely integrable. [Zakharov,Manakov
1974]

Construction of analytical solutions is possible.

In what follows and for simplicity we take ε = 1 and consider

the cubic NLS equation f
(
|ψ|2

)
= |ψ|2
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Hydrodynamic NLS

iψt +
1

2
∆ψ − |ψ|2 ψ = 0

The Madelung transform (1927)

ψ(x, t) =
√
ρ(x, t)e iθ(x,t) u = ∇θ{

ρt + div(ρu) = 0

(ρu)t + div (ρu⊗ u + Π) = 0

with : Π =

(
ρ2

2
− 1

4
∆ρ

)
Id +

1

4ρ
∇ρ⊗∇ρ
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A Lagrangian for DNLS equation


ρt + div(ρu) = 0

(ρu)t + div

(
ρu⊗ u +

(
ρ2

2
− 1

4
∆ρ

)
Id +

1

4ρ
∇ρ⊗∇ρ

)
= 0

L(u, ρ,∇ρ) =

∫
Ωt

(
ρ
|u|
2

2

− ρ2

2
− 1

4ρ

|∇ρ|
2

2
)
dΩt

E = ρ
|u|
2

2

+
ρ2

2
+

1

4ρ

|∇ρ|
2

2

Energy conservation law:

∂E

∂t
+ div(Eu + Πu− 1

4
ρ̇∇ρ) = 0 ; ρ̇ = ρt + u · ∇ρ
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Hyperbolic approximations

Hyperbolic heat conduction equation [Cattaneo 1958].

ut = uxx ⇒

{
ut = qx

qt = (ux − q)/τ
τ � 1

Hyperbolic approximation of dispersive shallow water
equations [Liapidevskii, Gavrilova 2008].

Hyperbolic Navier-Stokes equations [Peshkov, Romenskii
2016]
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Augmented Lagrangian approach [Favrie,Gavrilyuk 2017]

The objective

Obtain a new Lagrangian whose Euler-Lagrange equations :

are hyperbolic.

approximate NLS equations in a certain limit.

Summary of key Ideas

Consider a new variable that closely approximates ρ.

Take its gradient as an independent variable.

Rederive new system.
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Main Approach

(I) Original NLS Equations

(II) Original NLS Lagrangian (III) Augmented NLS Lagrangian

(IV) New system of equations
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The concept : The relaxation part

L(u, ρ,∇ρ) =

∫
Ωt

(
ρ |u|2

2
− ρe(ρ)− K (ρ)

|∇ρ|2

2

)
dΩt

∂tρ+ div(ρu) = 0

’Augmented’ Lagrangian approach

L̃(u, ρ, η,∇η, η̇) (η −→ ρ)

L̃ =

∫
Ωt

(
ρ
|u|
2

2

− ρe(ρ)− K (ρ)
|∇η|

2

2

− 1

2α
ρ

(
η

ρ
− 1

)2

+
βρ

2
η̇2

)
dΩt

1

2α
ρ

(
η

ρ
− 1

)2

: Penalty
βρ

2
η̇2 : Regularization

Firas DHAOUADI Waves in One World 15 / 45



Defocusing NonLinear Schrödinger equation
Augmented Lagrangian approach

Numerical Results
Conclusion and perspectives

The concept
Deriving the equations
Analysis and comparison

Types of variations

Two types of variations will be considered :

L̃(

I︷ ︸︸ ︷
u, ρ, η̇, η,∇η︸ ︷︷ ︸

II

) η̇ = ηt + u · ∇η

Type I : Virtual displacement of the continuum:

δ̂ρ = −div(ρδx) δ̂u = δ̇x−∇u · δx δ̂η̇ = δ̂u · ∇η

Type II : Variations with respect to η

δ∇η = ∇δη δ̂η̇ = (δη)t + u · ∇δη
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Augmented system Euler-Lagrange Equations

Type I : Virtual displacement of the continuum:

∂ρu

∂t
+ div (ρu⊗ u + ΠId + K (ρ)∇η ⊗∇η) = 0

where:

Π =

(
ρ2e ′(ρ) +

1

2

(
ρK ′(ρ)− K (ρ)

)
|∇η|2 +

η

α

(
1− η

ρ

))
Type II : Variations with respect to η:

(ρη̇)t + div

(
ρη̇u− K (ρ)

β
∇η
)

=
1

αβ

(
1− η

ρ

)
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Augmentation and closure of the system

Independent variables : p = ∇η and w = η̇.
1. Definition of w = η̇

w = η̇ = ηt + u · ∇η =⇒ (ρη)t + div(ρηu) = ρw

2. Evolution of p = ∇η

∇w = ∇(ηt + u · ∇η)

= (∇η)t +∇(u · ∇η)

=⇒ (∇η)t +∇(u · ∇η − w) = 0

=⇒ pt + div((p · u− w)Id) = 0

2’. Initial condition for p : pt=0 = (∇η)t=0
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Augmented system for NLS equation

The augmented system reads as :

∂tρ+ div(ρu) = 0

∂t(ρu) + div (ρu⊗ u + P) = 0

∂t(ρw) + div
(
ρwu− 1

4ρβp
)

= 1
αβ

(
1− η

ρ

)
∂t(ρη) + div(ρηu) = ρw

∂tp + div ((p · u− w) Id) = 0; curl(p) = 0

P =

(
ρ2

2
− 1

4ρ
|p|2 +

η

α
(1− η

ρ
)

)
Id +

1

4ρ
p⊗ p

Does it approximate NLS ?

Is it Hyperbolic ?

Values of α and β ?
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Face to face

Original NLSE {
ρt + div(ρu) = 0

(ρu)t + div (ρu⊗ u + Π) = 0

with : Π =

(
ρ2

2
−1

4
∆ρ

)
Id +

1

4ρ
∇ρ⊗∇ρ

Augmented system{
∂tρ+ div(ρu) = 0

∂t(ρu) + div (ρu⊗ u + P) = 0

P =

(
ρ2

2
− 1

4ρ
|p|2 +

η

α

(
1− η

ρ

))
Id +

1

4ρ
p⊗ p
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Relaxation / Couplings

wt + uwx︸ ︷︷ ︸
ẇ

− 1

4βρ2
px +

1

4βρ3
pρx =

1

αβρ

(
1− η

ρ

)

⇒ ρ− η = αβρ2ẇ − α

4
px +

α

4ρ
pρx

⇒ ρx − ηx = ρx − p = αβ
(
ρ2ẇ

)
x
− α

4

(
px −

1

ρ
pρx

)
x

⇒ η

α

(
1− η

ρ

)
= βρηẇ − η

4ρ
px +

η

ρ2
pρx

= −1

4
ρxx +

1

4ρ
ρ2
x +O(β) +O(α)
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One-Dimensional case : Hyperbolicity

In order to study the hyperbolicity of this system, we write it in
quasi-linear form :

∂U

∂t
+ A(U)

∂U

∂x
= q

where:

U =
(
ρ, u,w , p, η

)T
q =

(
0, 0, 1

αβρ

(
1− η

ρ

)
, 0,w

)T

A(U) =


u ρ 0 0 0

1 + η2

αρ3 u 0 0 1
αρ

(
1− 2η

ρ

)
p

4βρ3 0 u − 1
4βρ2 0

0 p −1 u 0
0 0 0 0 u


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One-Dimensional case : Hyperbolicity

The eigenvalues c of the matrix A are :

c = u, (c − u)2
± =

(
1

4βρ2 + ρ+ η2

αρ2

)
±
√(
− 1

4βρ2 + ρ+ η2

αρ2

)2

2
.

The right-hand side is always positive. However, the roots can be
multiple if

1

4βρ2
= ρ+

η2

αρ2
.

In the case of multiple roots : We still get five linear independent
eigenvectors. =⇒ the system is always hyperbolic
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Values of α and β

Values have to be assigned : a criterion is needed.

We can base this choice, for example, on the dispersion
relation.

Original DNLS dispersion relation

c2
p = ρ0 +

k2

4

Augmented DNLS dispersion relation

(cp)2 =

1

4βρ2
0

+ ρ0 +
1

α
+

1

αβρ2
0k

2
−

√√√√( 1

4βρ2
0

+ ρ0 +
1

α
+

1

αβρ2
0k

2

)2

− 4

(
1

αβρ0k2
+
ρ0 + 1

α

4βρ2
0

)
2
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Example estimation

0

1

2

3

4

5

6

0 2 4 6 8 10 12 k

cp

α=0.1

α=
0.0

1
α=

0.
00
1

Figure 1: The dispersion relation cp = f (k) for the original model
(continuous line) and the dispersion relation for the Augmented model
(dashed lines) for different values of α and for β = 10−4
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To summarize

1 Start from Euler-Korteweg equations.

2 Shift back to the Lagrangian.

3 Modify the Lagrangian (Relaxation, Augmentation).

4 Rederive the Euler-Lagrange equations + closure equations.

5 Write the scheme and do simulations.

These steps are reunited within a Mathematica code :

Input : Total energy or Lagrangian.

Output : ALL the Fortran lines needed for the code including
fluxes, eigenvalues, source terms, etc
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Numerical scheme: IMEX-Type

1-d system of equations to solve :

∂U

∂t
+
∂F

∂x
= S(U)

The idea is to solve the hyperbolic part explicitly and the source
term implicitly in time according to the scheme :

U? = Un − γ ∆t

∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
+ γ∆tS(U?)

Un+1 = Un − (γ − 1)
∆t

∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
− (2− γ)

∆t

∆x

(
F ?
i+ 1

2
− F ?

i− 1
2

)
+ (1− γ)∆tS(U?) + γ∆tS(Un+1)
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Numerical scheme : Riemann solver

Riemann Solver: Rusanov.

Fi+ 1
2

=
1

2

(
F(Un

i+1) + F(Un
i )
)
− 1

2
κn
i+ 1

2

(
Un

i+1 −Un
i

)
where κn

i+ 1
2

is obtained by using the Davis approximation :

κni+1/2 = max
j

(|cj(Un
i )|, |cj(Un

i+1)|),

where cj are the eigenvalues of the augmented system.
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Travelling wave solutions

NLS equation equation admits travelling wave solutions :ρ(x , t) = b1 − (b1 − b3)dn2
(√

b1 − b3 (x − Ut) , s
)

(b1 > b2 > b3)

with s the elliptic modulus satisfying the relation :

s2 =
b2 − b3

b1 − b3
, 0 < s < 1.

For each fixed value of 0 < s < 1, this solution is a periodic
wave of amplitude a and wavenumber k given by :

a =
b2 − b3

2
, k =

π

K (s)

√
2a

s2
.
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Grey Solitons

obtained from previous solution in the limit s → 1 :

ρ(x , t) = b1−
b1 − b3

cosh2
(√

b1 − b3 (x − Ut)
) u(x , t) = U− b1

√
b3

ρ(x , t)

0
ζ

ρ

b1

b3

0
ζ

u

u∞

u0

Figure 2: Grey soliton solution, for arbitrary values of the parameters b1

and b3 at t = 0
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Numerical solution for a grey soliton

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-20 -10  0  10 x

ρ

t=0

t=2T  0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -10  0  10 x

u

t=0

t=2T

Figure 3: Numerical profiles of ρ (left) and u (right) for the grey soliton
at t = 0 (dot-dashed line) and at t = 2T (continuous line). The used
domain is L = [−20, 20] with ∆x = 0.0002. Parameters used for the
simulation are b1 = 1.5, b3 = 1, U = 2, β = 10−4, α = 0.002.
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A brief introduction to DSWs

Riemann problem in dispersionless hydrodynamics governed by
Euler Equations :

ρR

ρL

0
x

ρ

ρR

ρ0

ρL

0
x

ρ

t = 0 t > 0

Figure 4: Shockwave solution to a Riemann problem for Euler Equations.
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A brief introduction to DSWs

τ2 τ1τ3τ4
τ=x/t

ρ0

ρR

ρL

ρ

Figure 5: Asymptotic profile of the solution to NLS equation (continuous
line) for the Riemann problem ρL = 2, ρR = 1 , uL = uR = 0.
Oscillations shown at t=70
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A brief introduction to DSWs

Non exhaustive Literature :

Writing Whitham equations for NLSE [Pavlov, 1987]

Structure of dispersive shockwave [Gurevich, Krylov, 1987]

Classification of DSWs arising from initial an discontinuity for
NLSE [El et al. 1995]

a [Hoefer et al. 2008, ], [El, Hoefer 2016] ,... etc
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DSW Numerical results : ρ

x/t

ρ

τ
4

τ
3

τ
2

τ
1

ρ
L

ρ
R

ρ
0

x/t

numerical simulation
Whitham envelope

Figure 6: Comparison of the numerical result ρ(x , t) = f (x/t) (blue line)
with the asymptotic profile of the oscillations from Whitham’s theory of
modulations. t=70
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DSW Numerical results : u

x/t

u

τ
4

τ
3

τ
2

τ
1

u
L

u
R

u
0

numerical simulation
Whitham envelope

Figure 7: Comparison of the numerical result u(x , t) = f (x/t) (blue line)
with the asymptotic profile of the oscillations from Whitham’s theory of
modulations. t=70
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vanishing oscillations at the left constant state
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Figure 8: Vanishing oscillations at the vicinity of τ = τ4. amplitude
decreases as ∝ t−1/2.
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Equations for thin films flow

The same approach was applied for thin films flows with capillarity,
which also are governed by an Euler-Korteweg type system :

ht + (hu)x = 0

(hu)t +

(
hu2 +

gh2

2
cos θ +

g2 sin(θ)2

ν2
h5 +

σ

2ρ
h2
x −

σ

ρ
hhxx

)
x

= gh sin(θ)− ν u
h

Figure 9: Sketch of the setting
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Liu & Gollub’s experiment (1994)
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Figure 10: The Liu-Gollub experiment. The curve is the dimensionless
depth of the wave profile in a 2.0 meter long canal, obtained with a
forcing frequency f = 1.5Hz, imposed at the left boundary.
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Numerical result : f=1.5Hz
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Figure 11: Comparison of the numerical simulation of the Liu-Gollub
experiment with experimental data for f=1.5Hz (α = 0.005,
β = 0.00003, ε = 0.0067, nx=4000 ) boundary.
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Numerical result : f=3.0Hz
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Figure 12: Comparison of the numerical simulation of the Liu-Gollub
experiment with experimental data for f=3.0Hz (α = 0.005,
β = 0.00003, ε = 0.0067, nx=4000 ) boundary.
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Conclusion

A first order hyperbolic approximation of defocusing NLS
equations is presented.

In 1-d, the system is unconditionally hyperbolic

Asymptotic and numerical comparisons between the original
and augmented system were done for both stationary and non
stationary solutions.

The approach is extendable to multidimensional case,
provided suitable modifications are made.
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Perspectives

limitations when ρ→ 0

Application to other E-K systems

Better numerics (boundary conditions, higher order, better
performance, ...)

Proper extension to multi-D.

Applications to systems with non convex energies.
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Thank you for your attention

Full details in :

Firas Dhaouadi, Nicolas Favrie, and Sergey Gavrilyuk.
Extended Lagrangian approach for the defocusing nonlinear
Schrödinger equation.
Studies in Applied Mathematics, 142(3):336–358, 2019.
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