First order hyperbolic equations approximating Defocusing NLS equation

Firas Dhaouadi Sergey Gavrilyuk Nicolas Favrie Jean-Paul Vila

Aix-Marseille Université - Université Toulouse III Paul Sabatier

June 17th, 2020

Introduction : Euler's equation for compressible fluids

A Lagrangian :

$$L = \int_{\Omega_t} \left(\frac{\rho \left| \mathbf{u} \right|^2}{2} - \rho e(\rho) \right) d\Omega_t$$

A differential constraint :

$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0}$$

 \implies The corresponding Euler-Lagrange equation:

$$(\rho \mathbf{u})_t + \operatorname{div} (\rho \mathbf{u} \otimes \mathbf{u} + \boldsymbol{p}(\rho)) = \mathbf{0}; \quad \boldsymbol{p}(\rho) = \rho^2 \boldsymbol{e}'(\rho)$$

Dispersive models in mechanics

 Surface waves with surface tension [Nikolayev, Gavrilyuk, Gouin 2006] :

$$\mathcal{L}(\mathbf{u},h,\nabla h) = \int_{\Omega_t} \left(\frac{h |\mathbf{u}|^2}{2} - \frac{gh^2}{2} - \sigma \frac{|\nabla h|^2}{2} \right) d\Omega_t$$

Shallow water equations described by Serre-Green-Naghdi equations [Salmon (1998)]:

$$\mathcal{L}(u,h,\dot{h}) = \int_{\Omega_t} \left(\frac{hu^2}{2} - \frac{gh^2}{2} + \frac{h\dot{h}^2}{6} \right) d\Omega_t$$

Euler-Korteweg-Van Der Waals type systems

$$L = \int_{\Omega_t} \mathcal{L}(\mathbf{u}, \rho, \nabla \rho) \, d\Omega_t = \int_{\Omega_t} \left(\frac{\rho \, |\mathbf{u}|^2}{2} - \rho e(\rho) - \mathcal{K}(\rho) \frac{|\nabla \rho|^2}{2} \right) \, d\Omega_t$$

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0 \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right) \end{cases}$$

$K(h) = \sigma$: constant capillarity

 $\partial_t(h\mathbf{u}) + \operatorname{div}(h\mathbf{u} \otimes \mathbf{u}) + \nabla p(h) = \sigma h \nabla (\Delta h)$

$K(\rho) = \frac{1}{4\rho}$: Quantum capillarity / DNLS equation

$$\partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \frac{1}{4\rho} \nabla \rho \otimes \nabla \rho) + \nabla \left(\frac{\rho^2}{2} - \frac{1}{4}\Delta \rho\right) = 0$$

Euler-Korteweg type systems

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0\\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right) \end{cases}$$

• **Ph.D Objective** \Rightarrow Make it first order hyperbolic !

Hyperbolic equations 🖌

- Wave-like behaviour.
- perturbations propagate at finite speeds.
- Mathematically well-posed equations.

1 Defocusing NonLinear Schrödinger equation

- Generalities
- Hydrodynamic Form
- 2 Augmented Lagrangian approach
 - The concept
 - Deriving the equations
 - Analysis and comparison

3 Numerical Results

- Scheme
- Reference solutions (Solitons + DSWs)
- Extension to thin films with capillarity

4 Conclusion and perspectives

Augmented Lagrangian approach Numerical Results Conclusion and perspectives Generalities Hydrodynamic Form

1 Defocusing NonLinear Schrödinger equation

- Generalities
- Hydrodynamic Form
- 2 Augmented Lagrangian approach
 - The concept
 - Deriving the equations
 - Analysis and comparison

3 Numerical Results

- Scheme
- Reference solutions (Solitons + DSWs)
- Extension to thin films with capillarity
- 4 Conclusion and perspectives

Augmented Lagrangian approach Numerical Results Conclusion and perspectives Generalities Hydrodynamic Form

The Non-Linear Schrödinger equation

$$i\epsilon\psi_t + \frac{\epsilon^2}{2}\Delta\psi - f\left(|\psi|^2\right)\psi = 0$$
 ; $\epsilon = \frac{\hbar}{m}$

- A wide range of applications: Nonlinear optics, quantum fluids, surface gravity waves.
- The 1d-equation is completely integrable. [Zakharov,Manakov 1974]
- Construction of analytical solutions is possible.
- In what follows and for simplicity we take $\epsilon = 1$ and consider the cubic NLS equation $f\left(|\psi|^2\right) = |\psi|^2$

Augmented Lagrangian approach Numerical Results Conclusion and perspectives Generalities Hydrodynamic Form

Hydrodynamic NLS

$$i\psi_t + \frac{1}{2}\Delta\psi - |\psi|^2\psi = 0$$

The Madelung transform (1927)

$$\psi(\mathbf{x}, t) = \sqrt{\rho(\mathbf{x}, t)} e^{i\theta(\mathbf{x}, t)} \qquad \mathbf{u} = \nabla\theta$$
$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0\\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \Pi) = 0 \end{cases}$$
with :
$$\Pi = \left(\frac{\rho^2}{2} - \frac{1}{4}\Delta\rho\right) \operatorname{Id} + \frac{1}{4\rho}\nabla\rho \otimes \nabla\rho$$

Augmented Lagrangian approach Numerical Results Conclusion and perspectives Generalities Hydrodynamic Form

A Lagrangian for DNLS equation

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0} \\ (\rho \mathbf{u})_t + \operatorname{div}\left(\rho \mathbf{u} \otimes \mathbf{u} + \left(\frac{\rho^2}{2} - \frac{1}{4}\Delta\rho\right)\mathbf{Id} + \frac{1}{4\rho}\nabla\rho \otimes \nabla\rho\right) = \mathbf{0} \end{cases}$$

$$\mathcal{L}(\mathbf{u},\rho,\nabla\rho) = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - \frac{\rho^2}{2} - \frac{1}{4\rho} \frac{|\nabla\rho|^2}{2} \right) d\Omega_t$$

$$E = \rho \frac{|\mathbf{u}|^2}{2} + \frac{\rho^2}{2} + \frac{1}{4\rho} \frac{|\nabla \rho|^2}{2}$$

Energy conservation law:

$$\frac{\partial E}{\partial t} + \operatorname{div}(E\mathbf{u} + \Pi\mathbf{u} - \frac{1}{4}\dot{\rho}\nabla\rho) = 0 \quad ; \qquad \dot{\rho} = \rho_t + \mathbf{u} \cdot \nabla\rho$$

The concept Deriving the equations Analysis and comparison

Defocusing NonLinear Schrödinger equation

- Generalities
- Hydrodynamic Form
- 2 Augmented Lagrangian approach
 - The concept
 - Deriving the equations
 - Analysis and comparison

3 Numerical Results

- Scheme
- Reference solutions (Solitons + DSWs)
- Extension to thin films with capillarity
- 4 Conclusion and perspectives

The concept Deriving the equations Analysis and comparison

Hyperbolic approximations

• Hyperbolic heat conduction equation [Cattaneo 1958].

$$u_t = u_{xx} \quad \Rightarrow egin{cases} u_t = q_x \ q_t = (u_x - q)/ au \end{cases} \quad au \ll 1$$

- Hyperbolic approximation of dispersive shallow water equations [Liapidevskii, Gavrilova 2008].
- Hyperbolic Navier-Stokes equations [Peshkov, Romenskii 2016]

The concept Deriving the equations Analysis and comparison

Augmented Lagrangian approach [Favrie, Gavrilyuk 2017]

The objective

Obtain a new Lagrangian whose Euler-Lagrange equations :

- are hyperbolic.
- approximate NLS equations in a certain limit.

Summary of key Ideas

- Consider a new variable that closely approximates ρ .
- Take its gradient as an independent variable.
- Rederive new system.

The concept Deriving the equations Analysis and comparison

Main Approach

(I) Original NLS Equations

The concept Deriving the equations Analysis and comparison

The concept Deriving the equations Analysis and comparison

The concept : The relaxation part

$$\mathcal{L}(\mathbf{u},\rho,\nabla\rho) = \int_{\Omega_t} \left(\frac{\rho |\mathbf{u}|^2}{2} - \rho e(\rho) - K(\rho) \frac{|\nabla\rho|^2}{2} \right) d\Omega_t$$
$$\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0$$

'Augmented' Lagrangian approach $\begin{aligned} \tilde{\mathcal{L}}(\mathbf{u},\rho,\eta,\nabla\eta,\dot{\eta}) & (\eta \longrightarrow \rho) \\ \tilde{\mathcal{L}} &= \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - \rho e(\rho) - \mathcal{K}(\rho) \frac{|\nabla\eta|^2}{2} - \frac{1}{2\alpha} \rho \left(\frac{\eta}{\rho} - 1\right)^2 + \frac{\beta\rho}{2} \dot{\eta}^2 \right) d\Omega_t \\ &= \frac{1}{2\alpha} \rho \left(\frac{\eta}{\rho} - 1\right)^2 : \text{Penalty} & \frac{\beta\rho}{2} \dot{\eta}^2 : \text{Regularization} \end{aligned}$

The concept Deriving the equations Analysis and comparison

Types of variations

Two types of variations will be considered :

• Type I : Virtual displacement of the continuum:

$$\hat{\delta}\rho = -\operatorname{div}(\rho\delta\mathbf{x})$$
 $\hat{\delta}\mathbf{u} = \dot{\delta}\mathbf{x} - \nabla\mathbf{u}\cdot\delta\mathbf{x}$ $\hat{\delta}\dot{\eta} = \hat{\delta}\mathbf{u}\cdot\nabla\eta$

• Type II : Variations with respect to η

$$\delta \nabla \eta = \nabla \delta \eta \qquad \hat{\delta} \dot{\eta} = (\delta \eta)_t + \mathbf{u} \cdot \nabla \delta \eta$$

The concept Deriving the equations Analysis and comparison

Augmented system Euler-Lagrange Equations

• Type I : Virtual displacement of the continuum:

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \operatorname{div} \left(\rho \mathbf{u} \otimes \mathbf{u} + \Pi \mathbf{Id} + K(\rho) \nabla \eta \otimes \nabla \eta \right) = \mathbf{0}$$

where:

$$\Pi = \left(\rho^2 e'(\rho) + \frac{1}{2} \left(\rho K'(\rho) - K(\rho)\right) |\nabla \eta|^2 + \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right)$$

• Type II : Variations with respect to η :

$$\left[(\rho\dot{\eta})_t + \operatorname{div}\left(\rho\dot{\eta}\mathbf{u} - \frac{\kappa(\rho)}{\beta}\nabla\eta\right) = \frac{1}{\alpha\beta}\left(1 - \frac{\eta}{\rho}\right)\right]$$

The concept Deriving the equations Analysis and comparison

Augmentation and closure of the system

Independent variables : $\mathbf{p} = \nabla \eta$ and $w = \dot{\eta}$.

1. Definition of $w = \dot{\eta}$

$$w = \dot{\eta} = \eta_t + \mathbf{u} \cdot \nabla \eta \implies (\rho \eta)_t + div(\rho \eta \mathbf{u}) = \rho w$$

2. Evolution of $\mathbf{p} = \nabla \eta$

$$\nabla w = \nabla (\eta_t + \mathbf{u} \cdot \nabla \eta)$$

= $(\nabla \eta)_t + \nabla (\mathbf{u} \cdot \nabla \eta)$
 $\implies (\nabla \eta)_t + \nabla (\mathbf{u} \cdot \nabla \eta - w) = 0$
 $\implies \mathbf{p}_t + \operatorname{div}((\mathbf{p} \cdot \mathbf{u} - w)\mathbf{Id}) = 0$

2'. Initial condition for $p : p_{t=0} = (\nabla \eta)_{t=0}$

The concept Deriving the equations Analysis and comparison

Augmented system for NLS equation

The augmented system reads as :

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0\\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \mathcal{P}) = 0\\ \partial_t(\rho w) + \operatorname{div}\left(\rho w \mathbf{u} - \frac{1}{4\rho\beta}\mathbf{p}\right) = \frac{1}{\alpha\beta}\left(1 - \frac{\eta}{\rho}\right)\\ \partial_t(\rho \eta) + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w\\ \partial_t \mathbf{p} + \operatorname{div}\left((\mathbf{p} \cdot \mathbf{u} - w) \,\mathbf{ld}\right) = 0; \quad \operatorname{curl}(\mathbf{p}) = 0\\ \mathcal{P} = \left(\frac{\rho^2}{2} - \frac{1}{4\rho} \,|\mathbf{p}|^2 + \frac{\eta}{\alpha}(1 - \frac{\eta}{\rho})\right) \mathbf{ld} + \frac{1}{4\rho}\mathbf{p} \otimes \mathbf{p} \end{cases}$$

- Does it approximate NLS ?
- Is it Hyperbolic ?
- Values of α and β ?

The concept Deriving the equations Analysis and comparison

Face to face

Original NLSE

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0\\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \Pi) = 0 \end{cases}$$

with :
$$\Pi = \left(\frac{\rho^2}{2} - \frac{1}{4}\Delta\rho\right) \mathbf{Id} + \frac{1}{4\rho}\nabla\rho \otimes \nabla\rho$$

Augmented system

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0\\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \mathcal{P}) = 0 \end{cases}$$
$$\mathcal{P} = \left(\frac{\rho^2}{2} - \frac{1}{4\rho} |\mathbf{p}|^2 + \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} + \frac{1}{4\rho} \mathbf{p} \otimes \mathbf{p}$$

The concept Deriving the equations Analysis and comparison

Relaxation / Couplings

$$\underbrace{w_t + uw_x}_{\dot{w}} - \frac{1}{4\beta\rho^2}p_x + \frac{1}{4\beta\rho^3}p\rho_x = \frac{1}{\alpha\beta\rho}\left(1 - \frac{\eta}{\rho}\right)$$

$$\Rightarrow \rho - \eta = \frac{\alpha\beta}{\rho^2}\dot{w} - \frac{\alpha}{4}p_x + \frac{\alpha}{4\rho}p\rho_x$$

$$\Rightarrow \rho_{x} - \eta_{x} = \rho_{x} - p = \frac{\alpha\beta}{\alpha\beta} \left(\rho^{2} \dot{w}\right)_{x} - \frac{\alpha}{4} \left(p_{x} - \frac{1}{\rho}p\rho_{x}\right)_{x}$$

$$\Rightarrow \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho} \right) = \frac{\beta}{\rho} \rho \eta \dot{w} - \frac{\eta}{4\rho} p_{x} + \frac{\eta}{\rho^{2}} p \rho_{x}$$
$$= -\frac{1}{4} \rho_{xx} + \frac{1}{4\rho} \rho_{x}^{2} + \mathcal{O}(\beta) + \mathcal{O}(\alpha)$$

The concept Deriving the equations Analysis and comparison

One-Dimensional case : Hyperbolicity

In order to study the hyperbolicity of this system, we write it in quasi-linear form :

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A}(\mathbf{U}) \frac{\partial \mathbf{U}}{\partial x} = \mathbf{q}$$

where:

$$\mathbf{U} = \left(\begin{array}{ccc} \rho, u, w, \rho, \eta \end{array} \right)^{T} \qquad \mathbf{q} = \left(\begin{array}{ccc} 0, 0, \frac{1}{\alpha\beta\rho} \left(1 - \frac{\eta}{\rho} \right), 0, w \end{array} \right)^{T}$$
$$\mathbf{A}(\mathbf{U}) = \left(\begin{array}{cccc} u & \rho & 0 & 0 & 0 \\ 1 + \frac{\eta^{2}}{\alpha\rho^{3}} & u & 0 & 0 & \frac{1}{\alpha\rho} \left(1 - \frac{2\eta}{\rho} \right) \\ \frac{\rho}{4\beta\rho^{3}} & 0 & u & -\frac{1}{4\beta\rho^{2}} & 0 \\ 0 & \rho & -1 & u & 0 \\ 0 & 0 & 0 & 0 & u \end{array} \right)$$

The concept Deriving the equations Analysis and comparison

One-Dimensional case : Hyperbolicity

The eigenvalues c of the matrix **A** are :

$$c = u, \ (c - u)_{\pm}^2 = rac{\left(rac{1}{4eta
ho^2} +
ho + rac{\eta^2}{lpha
ho^2}
ight) \pm \sqrt{\left(-rac{1}{4eta
ho^2} +
ho + rac{\eta^2}{lpha
ho^2}
ight)^2}}{2}.$$

The right-hand side is always positive. However, the roots can be multiple if

$$\frac{1}{4\beta\rho^2} = \rho + \frac{\eta^2}{\alpha\rho^2}.$$

In the case of multiple roots : We still get five linear independent eigenvectors. \implies the system is always hyperbolic

The concept Deriving the equations Analysis and comparison

Values of α and β

- Values have to be assigned : a criterion is needed.
- We can base this choice, <u>for example</u>, on the dispersion relation.

Original DNLS dispersion relation

$$c_{\rho}^2 = \rho_0 + \frac{k^2}{4}$$

Augmented DNLS dispersion relation

$$\left(c_{\rho}\right)^{2} = \frac{\frac{1}{4\beta\rho_{0}^{2}} + \rho_{0} + \frac{1}{\alpha} + \frac{1}{\alpha\beta\rho_{0}^{2}k^{2}} - \sqrt{\left(\frac{1}{4\beta\rho_{0}^{2}} + \rho_{0} + \frac{1}{\alpha} + \frac{1}{\alpha\beta\rho_{0}^{2}k^{2}}\right)^{2} - 4\left(\frac{1}{\alpha\beta\rho_{0}k^{2}} + \frac{\rho_{0} + \frac{1}{\alpha}}{4\beta\rho_{0}^{2}}\right)}{2}$$

The concept Deriving the equations Analysis and comparison

Example estimation

Figure 1: The dispersion relation $c_p = f(k)$ for the original model (continuous line) and the dispersion relation for the Augmented model (dashed lines) for different values of α and for $\beta = 10^{-4}$

The concept Deriving the equations Analysis and comparison

To summarize

- Start from Euler-Korteweg equations.
- Shift back to the Lagrangian.
- Modify the Lagrangian (Relaxation, Augmentation).
- Rederive the Euler-Lagrange equations + closure equations.
- Write the scheme and do simulations.

These steps are reunited within a Mathematica code :

- Input : Total energy or Lagrangian.
- Output : ALL the Fortran lines needed for the code including fluxes, eigenvalues, source terms, etc

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

Numerical scheme: IMEX-Type

1-d system of equations to solve :

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S}(\mathbf{U})$$

The idea is to solve the hyperbolic part explicitly and the source term implicitly in time according to the scheme :

$$\begin{aligned} \mathbf{U}^{\star} &= \mathbf{U}^{n} - \gamma \frac{\Delta t}{\Delta x} \left(F_{i+\frac{1}{2}}^{n} - F_{i-\frac{1}{2}}^{n} \right) + \gamma \Delta t \mathbf{S}(\mathbf{U}^{\star}) \\ \mathbf{U}^{n+1} &= \mathbf{U}^{n} - (\gamma - 1) \frac{\Delta t}{\Delta x} \left(F_{i+\frac{1}{2}}^{n} - F_{i-\frac{1}{2}}^{n} \right) - (2 - \gamma) \frac{\Delta t}{\Delta x} \left(F_{i+\frac{1}{2}}^{\star} - F_{i-\frac{1}{2}}^{\star} \right) \\ &+ (1 - \gamma) \Delta t S(\mathbf{U}^{\star}) + \gamma \Delta t S(\mathbf{U}^{n+1}) \end{aligned}$$

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

Numerical scheme : Riemann solver

Riemann Solver: Rusanov.

$$\mathbf{F}_{i+\frac{1}{2}} = \frac{1}{2} \left(\mathbf{F}(\mathbf{U}_{i+1}^n) + \mathbf{F}(\mathbf{U}_i^n) \right) - \frac{1}{2} \kappa_{i+\frac{1}{2}}^n \left(\mathbf{U}_{i+1}^n - \mathbf{U}_i^n \right)$$

where $\kappa_{i+\frac{1}{2}}^{\textit{n}}$ is obtained by using the Davis approximation :

$$\kappa_{i+1/2}^n = \max_i (|c_j(\mathbf{U}_i^n)|, |c_j(\mathbf{U}_{i+1}^n)|),$$

where c_i are the eigenvalues of the augmented system.

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

Travelling wave solutions

• NLS equation equation admits travelling wave solutions :

$$egin{cases}
ho(x,t) = b_1 - (b_1 - b_3) \mathrm{dn}^2 \left(\sqrt{b_1 - b_3} \left(x - Ut
ight), s
ight) \ (b_1 > b_2 > b_3) \end{cases}$$

with s the elliptic modulus satisfying the relation :

$$s^2 = rac{b_2 - b_3}{b_1 - b_3}, \quad 0 < s < 1.$$

• For each fixed value of 0 < s < 1, this solution is a periodic wave of amplitude *a* and wavenumber *k* given by :

$$a = \frac{b_2 - b_3}{2}, \quad k = \frac{\pi}{K(s)} \sqrt{\frac{2a}{s^2}}.$$

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

Grey Solitons

obtained from previous solution in the limit s
ightarrow 1 :

$$\rho(x,t) = b_1 - \frac{b_1 - b_3}{\cosh^2\left(\sqrt{b_1 - b_3}\left(x - Ut\right)\right)} \qquad u(x,t) = U - \frac{b_1\sqrt{b_3}}{\rho(x,t)}$$

Figure 2: Grey soliton solution, for arbitrary values of the parameters b_1 and b_3 at t = 0

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

Numerical solution for a grey soliton

Figure 3: Numerical profiles of ρ (left) and u (right) for the grey soliton at t = 0 (dot-dashed line) and at t = 2T (continuous line). The used domain is L = [-20, 20] with $\Delta x = 0.0002$. Parameters used for the simulation are $b_1 = 1.5$, $b_3 = 1$, U = 2, $\beta = 10^{-4}$, $\alpha = 0.002$.

Scheme **Reference solutions (Solitons + DSWs)** Extension to thin films with capillarity

A brief introduction to DSWs

Riemann problem in dispersionless hydrodynamics governed by Euler Equations :

Figure 4: Shockwave solution to a Riemann problem for Euler Equations.

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

A brief introduction to DSWs

Figure 5: Asymptotic profile of the solution to NLS equation (continuous line) for the Riemann problem $\rho_L = 2$, $\rho_R = 1$, $u_L = u_R = 0$. Oscillations shown at t=70

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

A brief introduction to DSWs

Non exhaustive Literature :

- Writing Whitham equations for NLSE [Pavlov, 1987]
- Structure of dispersive shockwave [Gurevich, Krylov, 1987]
- Classification of DSWs arising from initial an discontinuity for NLSE [El et al. 1995]
- [Hoefer et al. 2008,], [El, Hoefer 2016] ,... etc

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

DSW Numerical results : ρ

Figure 6: Comparison of the numerical result $\rho(x, t) = f(x/t)$ (blue line) with the asymptotic profile of the oscillations from Whitham's theory of modulations. t=70

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

DSW Numerical results : u

Figure 7: Comparison of the numerical result u(x, t) = f(x/t) (blue line) with the asymptotic profile of the oscillations from Whitham's theory of modulations. t=70

Scheme Reference solutions (Solitons + DSWs) Extension to thin films with capillarity

vanishing oscillations at the left constant state

Figure 8: Vanishing oscillations at the vicinity of $\tau = \tau_4$. amplitude decreases as $\propto t^{-1/2}$.

 $\begin{array}{l} \mbox{Scheme} \\ \mbox{Reference solutions (Solitons + DSWs)} \\ \mbox{Extension to thin films with capillarity} \end{array}$

Equations for thin films flow

The same approach was applied for thin films flows with capillarity, which also are governed by an Euler-Korteweg type system :

Figure 9: Sketch of the setting

 $\begin{array}{l} \mbox{Scheme} \\ \mbox{Reference solutions (Solitons + DSWs)} \\ \mbox{Extension to thin films with capillarity} \end{array}$

Liu & Gollub's experiment (1994)

Figure 10: The Liu-Gollub experiment. The curve is the dimensionless depth of the wave profile in a 2.0 meter long canal, obtained with a forcing frequency f = 1.5Hz, imposed at the left boundary.

 $\begin{array}{l} \mbox{Scheme} \\ \mbox{Reference solutions (Solitons + DSWs)} \\ \mbox{Extension to thin films with capillarity} \end{array}$

Numerical result : f=1.5Hz

Figure 11: Comparison of the numerical simulation of the Liu-Gollub experiment with experimental data for f=1.5Hz ($\alpha = 0.005$, $\beta = 0.0003$, $\varepsilon = 0.0067$, nx=4000) boundary.

 $\begin{array}{l} \mbox{Scheme} \\ \mbox{Reference solutions (Solitons + DSWs)} \\ \mbox{Extension to thin films with capillarity} \end{array}$

Numerical result : f=3.0Hz

Figure 12: Comparison of the numerical simulation of the Liu-Gollub experiment with experimental data for f=3.0Hz ($\alpha = 0.005$, $\beta = 0.0003$, $\varepsilon = 0.0067$, nx=4000) boundary.

Defocusing NonLinear Schrödinger equation

- Generalities
- Hydrodynamic Form
- 2 Augmented Lagrangian approach
 - The concept
 - Deriving the equations
 - Analysis and comparison

3 Numerical Results

- Scheme
- Reference solutions (Solitons + DSWs)
- Extension to thin films with capillarity

4 Conclusion and perspectives

Conclusion

- A first order hyperbolic approximation of defocusing NLS equations is presented.
- In 1-d, the system is unconditionally hyperbolic
- Asymptotic and numerical comparisons between the original and augmented system were done for both stationary and non stationary solutions.
- The approach is extendable to multidimensional case, provided suitable modifications are made.

Perspectives

- limitations when $\rho \rightarrow 0$
- Application to other E-K systems
- Better numerics (boundary conditions, higher order, better performance, ...)
- Proper extension to multi-D.
- Applications to systems with non convex energies.

Thank you for your attention

Full details in :

Firas Dhaouadi, Nicolas Favrie, and Sergey Gavrilyuk. Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation.

Studies in Applied Mathematics, 142(3):336–358, 2019.