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Abstract

We present an approximate first order hyperbolic model for the hydrodynamic form of the defocusing nonlinear Schrodinger equation (NLS). This Euler-
Korteweg type system can be seen as an Kuler-Lagrange equations to a Lagrangian submitted to a mass conservation constraint. Due to the presence
of dispersive terms, such a Lagrangian depends explicitly on the gradient of density. The idea is to create a new dummy variable which accurately
approximates the density via a penalty method. Then, we take its gradient as a new independent variable and apply Hamilton’s principle. After adding
suitable closure equations, the resulting system is a first order hyperbolic set of equations with stiff source terms and fast characteristic speeds. It is
solved numerically using Godunov-type methods. Comparisons with an exact and asymptotic solutions to the one-dimensional cubic NLS is presented.

1. Defocusing NLS Equation 2.Extended Lagrangian formulation

The defocusing cubic NLS equation has the fol- Let us consider a new variable 7. The idea is to substitute Vp by V7 and to guarantee the convergence
lowing form: of n to p in a certain limit. To do that, let us consider the extended Lagrangian :
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The change of variables ¥ = |/p e’ VO = u,
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known as Madelung’s Transform permits to cast where A > 1 and 8 < 1. The term % Iy (% — 1) is a classical penalty term. When A — oo, the

the previous equation into hydrodynamic form : . | 3 . | . | .
difference (1/p — 1) vanishes. The term % pn~ is necessary in order to regularize the time evolution

pi + div(pu) = 0 of n and to ensure the hyperbolicity of the new governing equations. We denote p = Vn and w = 7.
Using a variational principle to the Lagrangian L£¢ under the mass conservation constraint, one

(pu); +div (pu @ u + II) = 0, obtains the equations :
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This particular case of Euler-Korteweg type sys- dpu PE 1
tems can be seen as the Euler-Lagrange equa- o7 - div (pu Xu -+ ( > 1p ;
tions for the Lagrangian :
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3.Dispersion relation comparison 5 Tdiv((pru—w)ld)=0; curl(p) =0,

In the one-dimensionnal case, this system is hyperbolic and the characteristic speeds c are given by:
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5. Results

1 g i P numerical simulation

1.4 | -

1.3 | -
Figure 1: The dispersion relation, for the hy- 10| ]
drodynamic NLS equation (continuous line) and
for the extended Lagrangian (dashed lines) for Ay o _
B =10"% and different values of \. 1 | | t=oT | - ' ' W
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4 Numerical Resolution Figure 2: Left: Numerical results for a gray soliton with periodic BC (Az = 2.107%, X\ = 500,58 =

10~%). Right: Comparison of a simulated dispersive shock with its asymptotic envelope obtained

The shown results are obtained by the MUSCL- | | through Whitham’s Theory of modulations (Az = 6.66 1074, A = 300, 5 = 2.1075).
Hancock extension to the Godunov scheme, us-

ing Rusanov solver with a MIN-MOD limiter.In _
the 1-D case, the system can be written as : 6. Conclusions

Conclusions :

1. The hydrodynamic form of the one-dimensional cubic NLS equation is solved by an extended

where U, F and S are respectively the vector Lagrangian method

of conservative variables, flux vector and source
term. A splitting strategy is applied. Hence, at . The obtained system of equations is first order hyperbolic with stiff source terms and fast

each time step, the numerical resolution is split characteristic speeds.

into a hyperbolic part : . the numerical results show good agreement in the stationary and non-stationary case.
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