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Abstract
We present an approximate first order hyperbolic model for the hydrodynamic form of the defocusing nonlinear Schrödinger equation (NLS). This Euler-
Korteweg type system can be seen as an Euler-Lagrange equations to a Lagrangian submitted to a mass conservation constraint. Due to the presence
of dispersive terms, such a Lagrangian depends explicitly on the gradient of density. The idea is to create a new dummy variable which accurately
approximates the density via a penalty method. Then, we take its gradient as a new independent variable and apply Hamilton’s principle. After adding
suitable closure equations, the resulting system is a first order hyperbolic set of equations with stiff source terms and fast characteristic speeds. It is
solved numerically using Godunov-type methods. Comparisons with an exact and asymptotic solutions to the one-dimensional cubic NLS is presented.

1. Defocusing NLS Equation
The defocusing cubic NLS equation has the fol-
lowing form:

iψt + 1
2∆ψ − |ψ|2 ψ = 0.

The change of variables ψ = √ρ eiθ, ∇θ = u,
known as Madelung’s Transform permits to cast
the previous equation into hydrodynamic form :{

ρt + div(ρu) = 0,
(ρu)t + div (ρu⊗ u + Π) = 0,

with Π =
(
ρ2

2 −
1
4∆ρ

)
Id + 1

4ρ∇ρ⊗∇ρ.

This particular case of Euler-Korteweg type sys-
tems can be seen as the Euler-Lagrange equa-
tions for the Lagrangian :

L(ρ,u,∇ρ) =
∫

Ωt

(
ρ
|u|
2

2
− ρ2

2 −
1
4ρ
|∇ρ|

2

2
)
dΩ

2.Extended Lagrangian formulation
Let us consider a new variable η. The idea is to substitute∇ρ by∇η and to guarantee the convergence
of η to ρ in a certain limit. To do that, let us consider the extended Lagrangian :

Le(ρ,u, η,∇η, η̇) =
∫

Ωt

(
ρ
|u|
2

2
− ρ2

2 −
1
4ρ
|∇η|

2

2
−λ2 ρ

(
η

ρ
− 1
)2

+ β

2 ρη̇
2

)
dΩ,

where λ � 1 and β � 1. The term λ
2 ρ
(
η
ρ − 1

)2
is a classical penalty term. When λ → ∞, the

difference (η/ρ − 1) vanishes. The term β
2 ρη̇

2 is necessary in order to regularize the time evolution
of η and to ensure the hyperbolicity of the new governing equations. We denote p = ∇η and w = η̇.
Using a variational principle to the Lagrangian Le under the mass conservation constraint, one
obtains the equations :

∂ρ

∂t
+ div(ρu) = 0,

∂ρu
∂t

+ div
(
ρu⊗ u +

(
ρ2

2 −
1
4ρ |p|

2 + ηλ(1− η

ρ
)
)

Id + 1
4ρp⊗ p

)
= 0,

∂ρη

∂t
+ div(ρηu) = ρw,

∂ρw

∂t
+ div

(
ρwu− 1

4ρβp
)

= λ

β

(
1− η

ρ

)
,

∂p
∂t

+ div ((p · u− w) Id) = 0; curl(p) = 0.

In the one-dimensionnal case, this system is hyperbolic and the characteristic speeds c are given by:

c = u, (c− u)2
± = 1

2

(
1

4βρ2 + ρ+ λη2

ρ2 ±
∣∣∣∣− 1

4βρ2 + ρ+ λη2

ρ2

∣∣∣∣) .

3.Dispersion relation comparison
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Figure 1: The dispersion relation, for the hy-
drodynamic NLS equation (continuous line) and
for the extended Lagrangian (dashed lines) for
β = 10−4 and different values of λ.

4.Numerical Resolution
The shown results are obtained by the MUSCL-
Hancock extension to the Godunov scheme, us-
ing Rusanov solver with a MIN-MOD limiter.In
the 1-D case, the system can be written as :

Ut + F(U)x = S(U),

where U, F and S are respectively the vector
of conservative variables, flux vector and source
term. A splitting strategy is applied. Hence, at
each time step, the numerical resolution is split
into a hyperbolic part :

Ut + F(U)x = 0,

and an ordinary differential equation part :

Ut = S(U).

5. Results
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Figure 2: Left: Numerical results for a gray soliton with periodic BC (∆x = 2.10−4, λ = 500, β =
10−4). Right: Comparison of a simulated dispersive shock with its asymptotic envelope obtained
through Whitham’s Theory of modulations (∆x = 6.66 10−4, λ = 300, β = 2.10−5).

6. Conclusions
Conclusions :

1. The hydrodynamic form of the one-dimensional cubic NLS equation is solved by an extended
Lagrangian method.

2. The obtained system of equations is first order hyperbolic with stiff source terms and fast
characteristic speeds.

3. the numerical results show good agreement in the stationary and non-stationary case.
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