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From Euler-Korteweg to NLS equations
Hyperbolic NLS System

Thin film flows
Hyperbolic Navier-Stokes-Korteweg equations

Surface tension / capillarity

Euler-Korteweg equations : Fluid flow + Surface tension.

Surface tension = Tendency of a fluid to shrink and minimize
its surface.

Examples in nature : Droplet shape, ripples on the water
surface, water striders, etc...

Photos credits : pexels.com
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Industrial applications

Hydrophobic sprays (clothes, shoes, car glass, buildings, etc)

Anti-icing liquids for plane wings, heating systems,...

Nuclear evaporators, pharmaceutical applications...

Photo credits : Ave Calvar Martinez pexels.com Colin cutler boldmethod.com
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More theoretical examples

(a) (b) (c)
Dispersive shock in
nonlinear optics

Blast wave in a Bose-
-Einstein condensate

Capillary ripples on the
water surface

Photo credits (a) : Wan, W. et. al. Dispersive superfluid-like shock waves in nonlinear optics. Nature Phys 3,
46–51 (2007).
(b) : Hoefer, M. A et. al (2006). Dispersive and classical shock waves in Bose-Einstein condensates and gas
dynamics. Physical Review A, 74(2).
(c) : Wikipedia, picture taken by Roger McLassus (Creative commons)
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Euler-Korteweg equations

The equations write :{
ρt + div(ρu) = 0
(ρu)t + div(ρu⊗ u) +∇p(ρ) = ρ∇

(
K(ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)
where ρ = ρ(x, t), u = u(x, t) and (x, t) ∈ Rd × [0, T ]

K(ρ) = σ : Compressible flow with surface tension{
ρt + div(ρu) = 0
(ρu)t + div(ρu⊗ u) +∇p(ρ) = σρ∇(∆ρ)

K(ρ) = 1
4ρ : Quantum hydrodynamics{

ρt + div(ρu) = 0

(ρu)t + div
(
ρu⊗ u+ 1

4ρ∇ρ⊗∇ρ
)

+∇
(
ρ2

2 −1
4∆ρ

)
= 0
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Main objective

Given the Euler-Korteweg system of equations :{
ρt + div(ρu) = 0
(ρu)t + div(ρu⊗ u) +∇p(ρ) = ρ∇

(
K(ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)

3 Excellent universal model of dispersive mechanics.

7 contains high order derivatives.

7 is not hyperbolic.

7 has a Laplace operators in the flux.

Ultimate Motivation

Can we obtain a first-order hyperbolic reformulation of this model ?
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More than just hyperbolic

We want a new model that:

approximates Euler-Korteweg in some limit.

is derived from a variational principle.

is in line with the laws of thermodynamics.

can be solved numerically with accurate numerical methods.

Hyperbolic equations

Finite speed propagation (in line with relativity).

Mathematically well-posed equations.

A very rich literature on numerical methods.
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Outline

1 From Euler-Korteweg to NLS equations

2 Hyperbolic NLS System
Augmented Lagrangian approach - step 1
Augmented Lagrangian approach - step 2
Numerical results

3 Thin film flows
Governing equations
Numerical results

4 Hyperbolic Navier-Stokes-Korteweg equations
The equations
Numerical results
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The Non-Linear Schrödinger equation

Expressed in terms of the complex scalar field ψ(x, t) :

iψt +
1

2
∆ψ − f(|ψ|2)ψ = 0

It has a wide range of applications:

Nonlinear optics
Quantum fluids
Surface gravity waves

It is integrable in the 1-d case [Zakharov, Shabat 1972]

⇒ Obtaining analytical solutions is possible.
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Defocusing NLS equation

Particular case of a cubic non-linearity f(|ψ|2) = |ψ|2 :

iψt +
1

2
∆ψ − |ψ|2 ψ = 0

The Madelung transform (1927)

ψ(x, t) =
√
ρ(x, t)eiθ(x,t) u = ∇θ

ρt + div(ρu) = 0

(ρu)t + div

(
ρu⊗ u +

(
ρ2

2
− 1

4
∆ρ

)
Id +

1

4ρ
∇ρ⊗∇ρ

)
= 0

⇒ Corresponds to the Euler-Korteweg quantum hydrodynamic
system in the case of a potential flow (irrotational velocity field).
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Lagrangian for Quantum hydrodynamics system

The hydrodynamic form of NLS equation admits the following
Lagrangian:

L =

∫
Ωt

(
ρ |u|2

2
− ρ

2

2
− 1

4ρ

|∇ρ|2
2

)
dΩ

Hamilton’s principle : a =

∫ t1

t0

L dt
+

Differential constraint : ρt + div(ρu) = 0

(ρu)t + div

(
ρu⊗ u+

1

4ρ
∇ρ⊗∇ρ

)
+∇

(
ρ2

2
−1

4
∆ρ

)
= 0
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Augmented Lagrangian approach - step 1
Augmented Lagrangian approach - step 2
Numerical results

Augmented Lagrangian - Attempt 1

Original Lagrangian

L(u, ρ,∇ρ) =

∫
Ωt

(
ρ
|u|
2

2

− ρ

2

2
− 1

4ρ

|∇ρ|2
2

)
dΩ

ρt + div(ρu) = 0

’Augmented’ Lagrangian approach

L̃(u, ρ, η,∇η) (η −→ ρ)

L̃ =

∫
Ωt

(
ρ
|u|
2

2

− ρ

2

2
− 1

4ρ

|∇η|
2

2

− ρ

2α

(
η

ρ
− 1

)2
)
dΩ

=⇒ Time to derive the Euler-Lagrange equations !
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Augmented Lagrangian approach - step 1
Augmented Lagrangian approach - step 2
Numerical results

Hints on calculus of variations

L̃ =

∫
Ωt

(
ρ
|u|
2

2

− ρ

2

2
− 1

4ρ

|∇η|
2

2

− ρ

2α

(
η

ρ
− 1

)2
)
dΩ

L̃(

δx︷︸︸︷
u, ρ, η,∇η︸ ︷︷ ︸

δη

)⇒ Two Euler-Lagrange equations

Virtual displacement of the continuum (δx):

(ρu)t+div

(
ρu⊗ u +

1

4ρ
∇η ⊗∇η

)
+∇

(
ρ

2

2
− |∇η|

4ρ

2

+
η

α

(
1− η

ρ

))
= 0

η variation (δη) :

1

4ρ2
∇ρ · ∇η − 1

4ρ
∆η =

1

α

(
1− η

ρ

)
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Augmented Lagrangian approach - step 1
Augmented Lagrangian approach - step 2
Numerical results

Preliminary system

Thus the system of governing equations now writes :
ρt + div(ρu) = 0

(ρu)t + div
(
ρu⊗ u + 1

4ρ∇η ⊗∇η
)

+∇
(
ρ
2

2 − |∇η|4ρ

2
+ η

α

(
1− η

ρ

))
= 0

1
4ρ2∇ρ · ∇η − 1

4ρ∆η = 1
α

(
1− η

ρ

)

The obtained system :

7 still contains high order derivatives.

7 is not hyperbolic.

7 has an elliptic constraint.

Idea : Include η̇ into the Lagrangian !
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Augmented Lagrangian approach - step 1
Augmented Lagrangian approach - step 2
Numerical results

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

L̃(u, ρ, η,∇η, η̇) α, β � 1

L̃ =

∫
Ωt

(
ρ
|u|
2

2

− ρ2

2
− 1

4ρ

|∇η|
2

2

− ρ

2α

(
η

ρ
− 1

)2

+
βρ

2
η̇2

)
dΩ

Hamilton’s principle : a =

∫ t1

t0

L̃ dt


ρt + div(ρu) = 0

(ρu)t + div
(
ρu⊗ u + 1

4ρ∇η ⊗∇η
)

+∇
(
ρ
2

2 − |∇η|4ρ

2
+ η

α

(
1− η

ρ

))
= 0

(βρη̇)t + div
(
βρη̇u− 1

4ρ∇η
)

= 1
α

(
1− η

ρ

)
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Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

L̃(u, ρ, η,∇η, η̇) α, β � 1

L̃ =

∫
Ωt

(
ρ
|u|
2

2

− ρ2

2
− 1

4ρ

|∇η|
2

2

− ρ

2α

(
η

ρ
− 1

)2

+
βρ

2
η̇2

)
dΩ

Hamilton’s principle : a =

∫ t1

t0

L̃ dt


ρt + div(ρu) = 0

(ρu)t + div
(
ρu⊗ u + 1

4ρ∇η ⊗∇η
)
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(
ρ
2

2 − |∇η|4ρ

2
+ η

α

(
1− η

ρ

))
= 0

(βρη̇)t + div
(
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α
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Order reduction

1 We denote w = η̇. Thus :

w = ηt + u · ∇η =⇒ (ρη)t + div(ρηu) = ρw

2 We denote p = ∇η. Again take :

w = ηt + u · ∇η

=⇒ pt + div((p · u− w)Id) = 0

Important : p(x, t = 0) = ∇η(x, t = 0)
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Augmented NLS system



ρt + div(ρu) = 0

(ρu)t + div
(
ρu⊗ u +

(
ρ2

2 −
|p|2
4ρ + η

α(1− η
ρ )
)
Id + 1

4ρp⊗ p
)

= 0

(ρw)t + div
(
ρwu− 1

4βρp
)

= 1
αβ

(
1− η

ρ

)
(ρη)t + div(ρηu) = ρw
pt + div ((p · u− w) Id) = 0, (curl(p) = 0)

Main question : Is this system hyperbolic ?

⇒ Strongly hyperbolic in one dimension of space.

⇒ Weakly hyperbolic in multi-dimensions. + curl constraint
⇒ Strongly hyperbolic upgrade proposed in Busto & al. 2021.
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Hyperbolicity of augmented NLS

1-d case: u = (u, 0, 0)T and p = (p, 0, 0)T :

Ut +A(U)Ux = S(U) :

Eigensystem of A :

ξ1 = u , v1 = ( ρ
αρ3+η2

, 0, 0, p
αρ3+η2

, 1
2η−ρ)T

ξ2 = u+ 1
2ρ
√
β

, v2 = (0, 0,
√
β, 2, 0)T

ξ3 = u− 1
2ρ
√
β

, v3 = (0, 0,−√β, 2, 0)T

ξ4 = u+
√
ρ+ η2

αρ2
, v4 = (ρ,

√
ρ+ η2

αρ2
, 0, p, 0)T

ξ5 = u−
√
ρ+ η2

αρ2
, v5 = (ρ,−

√
ρ+ η2

αρ2
, 0, p, 0)T

⇒ The system is always hyperbolic.
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Dispersion relation comparison

0

1

2

3

4

5

6

0 2 4 6 8 10 12 k

cp

α=0.1

α=
0.0

1
α=

0.
00
1

The dispersion relation cp = f(k) for the original model (continuous line)
and the dispersion relation for the Augmented model (dashed lines) for
different values of λ and for β = 10−4
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Numerical scheme: IMEX-Type

1-d system of equations to solve :

∂U

∂t
+
∂F

∂x
= S(U)

The idea is to solve the hyperbolic part explicitly and the source

term implicitly in time according to the scheme (γ = 1−
√

2
2 ):

U? = Un − γ ∆t

∆x

(
Fn
i+ 1

2

− Fn
i− 1

2

)
+γ∆tS(U?)

Un+1 = Un − (γ − 1)
∆t

∆x

(
Fn
i+ 1

2

− Fn
i− 1

2

)
− (2− γ)

∆t

∆x

(
F ?
i+ 1

2

− F ?
i− 1

2

)
+ (1− γ)∆tS(U?)+γ∆tS(Un+1)

MUSCL reconstruction in space.

Rusanov solver for the fluxes.
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Grey Soliton solution

ρ(x, t) = b1−
b1 − b3

cosh2
(√
b1 − b3 (x− Ut)

) u(x, t) = U − b1
√
b3

ρ(x, t)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-20 -10  0  10 x

ρ

t=0

t=2T  0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -10  0  10 x

u

t=0

t=2T

Numerical profiles of ρ (left) and u (right) at t = 0 and t = 2T . The
used domain is L = [−20, 20] with N = 100000. Parameters used for the
simulation are U = 2, β = 10−4, α = 0.002.
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Shock waves for Euler equations

Riemann problem in dispersionless hydrodynamics governed by
Euler Equations :

ρR

ρL

0
x

ρ

ρR

ρL

0
x

ρ

t = 0 t > 0

Shockwave solution to a Riemann problem for Euler Equations.
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Dispersive Shock waves

τ2 τ1τ3τ4
τ=x/t

ρ0

ρR

ρL

ρ

Asymptotic profile of the solution to NLS equation (continuous line) for
the Riemann problem ρL = 2, ρR = 1 , uL = uR = 0. Oscillations shown
at t=70
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DSW Numerical results : ρ

τ4 τ3 τ2 τ1

ρL

ρR

ρ0

x/t

ρ

simulation
Whitham envelope

Comparison of the numerical result (ρ) with the Whitham modulational
profile of the DSW at t = 70. β = 2.10−5, α = 10−3, N = 100000. The
computational domain is [−500, 500]
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Thin film equations

1 From Euler-Korteweg to NLS equations

2 Hyperbolic NLS System
Augmented Lagrangian approach - step 1
Augmented Lagrangian approach - step 2
Numerical results

3 Thin film flows
Governing equations
Numerical results

4 Hyperbolic Navier-Stokes-Korteweg equations
The equations
Numerical results
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Equations for thin films flow

Consider a thin film of liquid on an inclined horizontal plane which
is moving under the effects of gravity :

x

u(x,z,t)

h(x,t)

g

z

O

θ

L

~

~ ~ ~ ~

~

~ ~

~

Sketch of the setting.

Thin film flows → Long wave approximation : ε = h
L � 1
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Governing equations

The dimensionless governing equations are obtained from
Navier-Stokes equations as a leading order expansion in the long
wave parameter ε [Lavalle,2015]:

ht + (hU)x = 0

(hU)t +

(
hU2 +

cos θ

2F 2
h2 +

2λ2

225
h5

)
x

=
εκ1

F 2
hhxxx +

1

εRe

(
λh− 3U

h

)
+ o(ε)

Re =
h̃N ŨN

ν
, F =

ŨN√
gh̃N

, We =
ρ

γ
h̃N Ũ

2
N , λ =

Re sin θ

F 2
, κ1 =

εF 2

We

Equivalent system in dimensional variables :

h′t′ + (h′U ′)x′ = 0

(h′U ′)t′ +

(
h′U ′2 +

gh′2

2
cos θ +

g2 sin(θ)2

ν2
h′5
)
x′
− σ

ρ
h′h′x′x′x′ = gh′ sin(θ)− ν U

′

h′
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Considered system


ht + (hU)x = 0

(hU)t +

(
hU2 +

2λ2

225
h5 +

cos θ

2F 2
h2

)
x

− εκ1

F 2
hhxxx =

1

εRe

(
λh− 3U

h

)
Additional difficulties :

1 Model admits inherent dissipation.

2 New system should preserve asymptotics in ε.
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Deriving the augmented system

Dissipative equations

dissipationless equations + Dissipative source terms

Dissipationless augmented system

Augmented Lagrangian

Dissipative augmented system

+
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Augmented system

After applying Hamilton’s principle, the augmented system writes :

ht + (ρu)x = 0,

(hu)t +

(
hu2 +

h2cosθ

2F 2
+

2λ2h5

225
+
εκ1p

2

2F 2
+
η

α

(
1− η

h

))
x

=
1

εRe

(
λh− 3U

h

)
,

(hη)t + (hηu)x = ρw,

(hw)t +

(
hwu− εκ1p

βF 2

)
x

=
1

αβ

(
1− η

ρ

)
,

pt + (pu− w)x = 0

=⇒ How to choose α and β in this setting ?
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Asymptotic study

Too many small parameters : α, β, ε.

=⇒ We pose α = εm and β = εp.

=⇒ Expand phase velocities of both systems in ε :

cp = cp0 + εcp1 + ε2cp2 + ...

then choose m and p so that :
1 Phase speeds of both systems are consistent.
2 Neutral stability curves of both systems are consistent.

After tedious calculations

Phase speeds are consistent to 2nd order if α = o(ε) and β = o(ε3)

What about stability analysis ?
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Stability analysis

Re

k

original model
α = ε, β = ε3

α = ε, β = ε2

α =
√
ε, β = ε3

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

Instable region

Stable region

Neutral stability curves in the (k,Re) plane for the original model (blue
continuous line) and the augmented model for various scalings of α and
β with respect to ε. Parameters are θ = 6.4◦, We = 0.184, F = 0.847
and ε = 0.006.
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One last step before results

In order to compare with experimental results, 2nd order viscosity
must be added to the model :

(hu)t +

(
hu2 +

h2

2F 2
cosθ +

2λ2h5

225

)
x

=
1

εRe

(
λh− 3u

h

)
+
εκ1

F 2
hhxxx

+
9ε

2Re
(hux)x

On the discrete level, we use centered finite differences :

(hux)x =
(

(hux)i+ 1
2
− (hux)i− 1

2

)
/∆x

(hux)i+ 1
2

= hi+ 1
2

(ui+1 − ui−1) /∆x
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Liu & Gollub’s experiment (1994)

0.6

0.8

1

1.2

1.4

1.6

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
x̃(m)

h

Dimensionless water height as a function of space (dimensioned), in the
setting of the Liu & Gollub experiment, for an imposed frequency of
1.5Hz. (Obtained through numerical simulation). Parameters used here
are : Re = 19.33, κ = 1.440.10−4, Fr = 0.8476,θ = 6.4◦
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Results for different frequencies

Numerical simulation result Experimental result

0.7
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h

(a)

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

120 130 140 150 160 x̃(cm)

h
(b)

Inlet oscillation frequency : (a) 1.5Hz, (b) 3.0 Hz
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Thorough comparison for 1.5Hz

0.7
0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

120 130 140 150 160 x̃(cm)

h

numerical result
experimental result

Superimposed numerical simulation with the experimental result for
f̃ = 1.5Hz.

=⇒ Very good agreement in both shape and values.

=⇒ Involved waveslengths are correctly captured by the model.
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Test for a nonlinear surface tension

the same approach was used in the case of a nonlinear surface
tension term :

L =

∫
Ωt

(
1

2
h̃Ũ2 − 1

2
gh̃2 − σ

ρ

√
1 + h̃2

x̃

)
dΩ

Corresponding augmented Lagrangian is given by :

L =

∫
Ωt

(
1

2
h̃Ũ2 +

1

2
β̃h̃w̃2 − 1

2
gh̃2 − σ

ρ

√
1 + p̃2 +

h̃

2α̃

(
1− η̃

h̃

)2
)
dΩ

=⇒ Corresponding system of equations is shown hyperbolic.
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Results

2

2.5

3

3.5

4

4.5

−20 −15 −10 −5 0 5 10 15 x̃(mm)

h̃(mm)

linear capillarity sim.
linear capillarity ref.
nonlinear capillarity sim.
nonlinear capillarity ref.

Comparison of the obtained numerical results (solid lines) with the
converged numerical solutions shown in Bresch et.al [2020] (dots), at
t = 5ms. Parameters used here are g = 9.81m.s−2, σ = 0.0728Kg.s−2,
ρ = 1000Kg.m−3, h0 = 2.725mm. α̃ = 10−3m−2s2 and β̃ = 10−5.
Results are shown with a mesh resolution of n = 5000.
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Preliminary conclusion

A generic approach to build a first order hyperbolic
approximation of Euler-Korteweg equations was developed.

Analytical, asymptotic and numerical comparisons between
the original and augmented system were done.

Numerical results have shown very good agreement for two
specific systems : Defocusing NLS and thin films flows in
stationary and non stationary cases.

Extension to nonlinear forms of capillary term was shown
successful.

7 Still used finite differences (7) for Laplace operator (777).

7 Model is not perfectly hyperbolic for viscous flows.

Firas DHAOUADI Winter School 2022, Trento 39 / 51



From Euler-Korteweg to NLS equations
Hyperbolic NLS System

Thin film flows
Hyperbolic Navier-Stokes-Korteweg equations

Governing equations
Numerical results

Preliminary conclusion

A generic approach to build a first order hyperbolic
approximation of Euler-Korteweg equations was developed.

Analytical, asymptotic and numerical comparisons between
the original and augmented system were done.

Numerical results have shown very good agreement for two
specific systems : Defocusing NLS and thin films flows in
stationary and non stationary cases.

Extension to nonlinear forms of capillary term was shown
successful.

7 Still used finite differences (7) for Laplace operator (777).

7 Model is not perfectly hyperbolic for viscous flows.

Firas DHAOUADI Winter School 2022, Trento 39 / 51



From Euler-Korteweg to NLS equations
Hyperbolic NLS System

Thin film flows
Hyperbolic Navier-Stokes-Korteweg equations

Governing equations
Numerical results

Preliminary conclusion

A generic approach to build a first order hyperbolic
approximation of Euler-Korteweg equations was developed.

Analytical, asymptotic and numerical comparisons between
the original and augmented system were done.

Numerical results have shown very good agreement for two
specific systems : Defocusing NLS and thin films flows in
stationary and non stationary cases.

Extension to nonlinear forms of capillary term was shown
successful.

7 Still used finite differences (7) for Laplace operator (777).

7 Model is not perfectly hyperbolic for viscous flows.

Firas DHAOUADI Winter School 2022, Trento 39 / 51



From Euler-Korteweg to NLS equations
Hyperbolic NLS System

Thin film flows
Hyperbolic Navier-Stokes-Korteweg equations

The equations
Numerical results

Hyperbolic Navier-Stokes-Korteweg equations

1 From Euler-Korteweg to NLS equations

2 Hyperbolic NLS System
Augmented Lagrangian approach - step 1
Augmented Lagrangian approach - step 2
Numerical results

3 Thin film flows
Governing equations
Numerical results

4 Hyperbolic Navier-Stokes-Korteweg equations
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Numerical results
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Navier-Stokes-Korteweg systems

Viscous tensor is added to Euler-Korteweg equations:{
ρt + div(ρu) = 0
(ρu)t + div(ρu⊗ u) +∇p(ρ) = K + S

where the (dispersive) Korteweg stress tensor is given by:

K = ρ∇
(
K(ρ)∆ρ+

1

2
K ′(ρ)|∇ρ|2

)
and the (viscous) Navier-Stokes stresses are given by

S = µ

(
∇u +∇uT − 2

3
div(u)I

)
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General difficulties with NSK system

Main difficulties are given by
1 Nonlinear High-order terms.
2 Very constricting CFL time-stepping.
3 Often coupled with non-convex equations of state (unphysical

negative pressure), for example

p =
ρRT

1− bρ − aρ
2, a > 0, b > 0

In order to address these challenges :

A Hyperbolic reformulation of Euler-Korteweg systems was
just presented.

A hyperbolic reformulation of Navier-Stokes Equations
(Godunov-Peshkov-Romenski) was presented in the previous
lecture.

The idea : Combine both models.
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Hyperbolic NSK = Hyperbolic EK + Hyperbolic NS

Ma.C ρt + div(ρu) = 0

Mo.B (ρu)t + div (ρu⊗ u + PId +K(ρ)p⊗ p− σ) = 0

η evolution (ρη)t + div(ρηu) = ρw

η − E-L (ρw)t + div

(
ρwu− K(ρ)

β
p

)
=
λ

β

(
1− η

ρ

)
p evolution pt +∇ (p · u− w) = 0

Distortion At +∇(Au) +

(
∂A

∂x
−
(
∂A

∂x

)T)
· u = 0

HM (ρJ)t + div(ρJ⊗ u + T I) = −ρH

with σ = −ρATEA and P is the hyperbolic Korteweg stress.
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GLM-curl cleaning approach

By definition p = ∇η.

By definition curl(p) = 0.

Theoretically satisfied, but not numerically guaranteed.

In order to avoid spurious errors on curl(p) we use GLM-curl
cleaning [3]:

pt −∇w +

(
∂u

∂x

)T
p +

(
∂p

∂x

)
u + 2acρ curl(ψ) = 0

ψt +

(
∂ψ

∂x

)T
u− ac

2ρ
curl(p) = 0

with fast cleaning speed ac that propagates curl(p) errors.
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About non-convex energy

Take barotropic Euler equations for example. Energy is given by :

E = W (ρ) +
1

2
ρ|u|2

Eigenvalues of the PDE are given by :

λ1 = u− c, λ2 = u, λ3 = u+ c

where c is given by : c =
√
ρW ′′(ρ).

=⇒ Complex values for non-convex energy!.
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Recall Hyperbolic NLS equation eigenvalues

ξ1 = u , v1 = ( ρ
αρ3+η2

, 0, 0, p
αρ3+η2

, 1
2η−ρ)T

ξ2 = u+ 1
2ρ
√
β

, v2 = (0, 0,
√
β, 2, 0)T

ξ3 = u− 1
2ρ
√
β

, v3 = (0, 0,−√β, 2, 0)T

ξ4 = u+
√
ρ+ η2

αρ2
, v4 = (ρ,

√
ρ+ η2

αρ2
, 0, p, 0)T

ξ5 = u−
√
ρ+ η2

αρ2
, v5 = (ρ,−

√
ρ+ η2

αρ2
, 0, p, 0)T

Fast dispersive characteristics cover-up for non-convex regions!

Restores hyperbolicity even for non-convex internal energy.
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In summary

The hyperbolic Navier-Stokes-Korteweg we propose

1 is first order system

(of 25 scalar evolution equation in the
most general case, in three dimensions of space).

2 No high-order terms, no Laplace operator.

3 is hyperbolic (at least the linearized version, non-trivial in
general).

4 remains hyperbolic even for non-convex internal energy.

5 generally requires usual linear in ∆x time-stepping.
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Ostwald Ripening with 3 bubbles

Ostwald ripening with three bubbles (Obtained with a P3P3 ADER-DG
scheme + Periodic boundary conditions + WENO3 subcell limiting on a
96× 96 grid)
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Ostwald Ripening with 14 bubbles

Ostwald ripening test case with 14 bubbles (Obtained with a P3P3

ADER-DG scheme + Periodic boundary conditions + WENO3 subcell
limiting on a 192× 192 grid)

Firas DHAOUADI Winter School 2022, Trento 49 / 51



From Euler-Korteweg to NLS equations
Hyperbolic NLS System

Thin film flows
Hyperbolic Navier-Stokes-Korteweg equations

The equations
Numerical results

Conclusion & Perspectives

Summary :

A first order hyperbolic reformulation of general dispersive and
diffusive continuum mechanics equations is presented

Particular attention was given to Navier-Stokes-Korteweg equations.

Current concerns :

Flux splitting approaches to separate fast characteristics from the
rest.

Extension to more general and nonlinear energies depending on
other forms of the gradient of macroscopic variables.

Better schemes for exactly conserving the curl-free and/or
divergence-free constraints.
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Thank you

Thank you for your attention !
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