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Cahn-Hilliard equations (1958)

The Cahn-Hilliard equation is postulated as a conservative diffusion equation which
writes

de
ot

@ ¢ € [—1,1] is the order parameter indicating the phases.

A(c3—c—’yAc).

@ v < 1is such that /7 is the diffuse interface characterstic length.

@ describes well the process of phase separation in binary systems: spinodal
decomposition, Ostwald Ripening phenomena, etc

@ Has applications for modeling binary alloys, sedimentation problems, etc ...
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On the Cahn-Hilliard equations
Hyperbolic Model Derivation
Numerical scheme and Results

About the equation

%:A(CS—C—’}/AC).
Cool features
@ scalar PDE.
o Well-posed.

o diffuse-interface model (able to deal with strong topological changes).
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About the equation

%:A( 3—c—'yAc).
Cool features
@ scalar PDE.
o Well-posed.

o diffuse-interface model (able to deal with strong topological changes).
Not so cool features

@ non-convex equation of state (Requires very careful treatment)

@ 4th Order in space (Forget about explicit solvers)

@ Violates principle of Causality (Laplace operator)
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Plan of presentation

@ On the Cahn-Hilliard equations

© Hyperbolic Model Derivation
@ 2nd-order approximation
@ 1st-order approximation approximation
@ Analysis

© Numerical scheme and Results

@ Numerical scheme
@ Some results
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On the Cahn-Hilliard equations

Conservative form and chemical potential

The Cahn-Hilliard equation can be cast into a conservation-law form which writes
0
o7 +div () =0, (1)

where the mass flux j is assumed to obey a generalized Fick's law such that
j = _vlua
and p is the chemical potential of the system given by

Y (Y

— 3 .
H=%c ™ dc 8Vc> = —cmAe

where

(2-1)%
1 2
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On the Cahn-Hilliard equations

Lyapunov functional

CH equation admits the Lyapunov functional

F(e,Ve) = /D f(e,Ve) dQ

Indeed, we have

of | .. _ 2
5 T div () = —lIVull”,

which in integral form writes

0

F 9
— =- \Y% dQ) <0.
5 =~ [ IvulE de <o
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On the Cahn-Hilliard equations 2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Numerical scheme and Results Analysis

Hyperbolic reformulation

© Hyperbolic Model Derivation
@ 2nd-order approximation
@ 1st-order approximation approximation
@ Analysis
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2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Analysis

Modified action functional

Let us introduce the following action functional

a://LdDdt
tJD

) 2 —1)° a
£ (0090 8) =S Tivpr - fe-e2 +

where

\)

TR
7 N\
Q
S
~
Do

@ ( is a new variable substituting ¢ as the order parameter.
@ a > 1 so that (¢ — ¢) vanishes in the limit & — +oc0.

@ 0 < 1 is a small parameter.
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Numerical scheme and Results Analysis

Generalized Fick's law for ¢

Oy 2 —1)* B[Oy 2
£ 90 2) =S Tivalr - Se-vr + 5 (%)

Generalized Fick's law now becomes

de . B _ oL L _ g
5 TAV(VR) =0, p=—rn = - = —ctale-g),

= 2nd-order PDE, no 4th-order terms

%—A(C —c+alc—y)) =0, (I)
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Numerical scheme and Results Analysis

Euler-Lagrange equation for ¢

2 2
8@ -1 ~ «a B [y

For ¢, we simply write the Euler-Lagrange equations.

2 a—£ + div _8£ —8—£
ot \ dpy OVp/) O

2
—div(yWVe) =alc—9) ()

which gives

0%p
5o 8752
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Numerical scheme and Results Analysis

2nd-order approximation of the Cahn-Hilliard equation

Thus so far we have obtained the following system of two 2nd order PDEs

oc
5 — A (V(@ —ctalc—y)) =0,

02 .
B — div(1V) = ale - ¢).
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2nd-order approximation of the Cahn-Hilliard equation

Thus so far we have obtained the following system of two 2nd order PDEs

Oc
5 — A (V(@ —ctalc—y)) =0,

02 ,
Ba—;f —div (V) = alc — ¢).

e Equation (I) is reminiscent of heat equation.
= Cattaneo-type relaxation.
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2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Analysis

2nd-order approximation of the Cahn-Hilliard equation

Thus so far we have obtained the following system of two 2nd order PDEs

Oc
5 — A (V(@ —ctalc—y)) =0,

02 ,
BET;ZP —div (V) = alc — ¢).

e Equation (I) is reminiscent of heat equation.
= Cattaneo-type relaxation.

e Equation (II) is a hyperbolic wave equation with right-hand side. = Order
reduction.
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On the Cahn-Hilliard equations 2nd-order approximation

Hyperbolic Model Derivation 1st-order approximation approximation
Numerical scheme and Results Analysis

0% )
Bom —div(yVe) =alc—¢) ()

Let us denote the independent variables

0
w=5a—f, p=Vep.
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Order reduction for (/1)

0%
Bom —div(yVe) =alc—¢) ()
Let us denote the independent variables
I

Therefore (II) becomes

ow

a5 div (yp) = —a(y — ¢),
dp _ 1

ot B’

op 1
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Order reduction for (/1)

0%
Bom —div(yVe) =alc—¢) ()
Let us denote the independent variables

I

Therefore (II) becomes
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Order reduction for (/1)

2

598 —div (Vo) =ale—¢) ()

Let us denote the independent variables
Oy
w ﬂat, P %

Therefore (II) becomes

ow

5~ div(yp) = —alp — o),
dp _ 1

ot B’

op 1 B
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On the Cahn-Hilliard equations 2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Numerical scheme and Results Analysis

Relaxation for equation ([)

@ + div 14) =
ot ;4=
9q

1
Vi=--q,
8t+ H Tq

@ 7 < 1 is a relaxation time.

@ c is still a conserved quantity in this framework.
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2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Analysis

Final system approximating the Cahn-Hilliard equations

2 ¢ aio(La) <o
T

ot

aa(;l—f-V(cg—c—l—a(c—go)) :—%q
%1: —div(yp) = —alp — ¢)
%;—;Vw:0

@ System of hyperbolic equations with relaxations.
@ Equations are conservative also in multiple dimensions.
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2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Analysis

Hyperbolicity

We cast the previous in quasilinear form

0Q

D= AV — 5

2 AQ =8(Q)
where Q is the vector of conserved variables and A(Q) is the quasilinear matrix, both
given by

0 10 0 0
a+3?-1 0 0 0 -«
A(Q) = 0 0 0 —y 0 | Ou
0 0o -1 0o o0 ’
B
Os5 Os5.4

)"

Q= (¢c,q1,w,p1,9,q2,q3, D2, P3
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On the Cahn-Hilliard equations 2nd-order approximation
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Eigenvalues

System admits a full set of real eigenvalues given by

V32 +a—1
X1=———"—"F&—"

\/7_

X2 = —

=55

X3-7 =

X8 =

55l

+a—1
=T
and a corresponding set of linearly independent eigenfields.
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2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Analysis

Lyapunov Functional

Proposition

The proposed hyperbolic Cahn-Hilliard system admits the following Lyapunov
functional

E = / e(c, o, q,p,w) d,

@

1
efcsp,py0) = = + T Ipl + Sl 0)? + ppu® + ol
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On the Cahn-Hilliard equations 2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Numerical scheme and Results Analysis

Proof

We express the fluxes as a function of the conjugate variables

Oc . Ode
i + div <8q> =0

g ()

ot Jc oq
g (2) 2
ot op Jp
op Oe

ot v (8w> -

dp  Oe

ot ow
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On the Cahn-Hilliard equations 2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Numerical scheme and Results Analysis

Proof

We express the fluxes as a function of the conjugate variables

Oe Jc . Oe
ac'{a-l-dlv (8_01) =0

de [0q de Oe
sa (o +v(5)~
o [ (00 e
ow ot Jp dy
Oe op Oe

w oV (5)

de [dp  Oe
&fo'{_t_@_w
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On the Cahn-Hilliard equations
Hyperbolic Model Derivation

Numerical scheme and Results

Proof

2nd-order approximation
1st-order approximation approximation
Analysis

We express the fluxes as a function of the conjugate variables

Jc . Oe
'{(%-Fdlv (8(1) =0

Oe
oc

Oe

aTl
Oe

ow

Oe

%.
Oe

Firas DHAOUADI

dc oq
e _ o
op) Oy
Oe Oe de|?
= —||=]| <o,
op Ow oqll —
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2nd-order approximation
Hyperbolic Model Derivation 1st-order approximation approximation
Analysis

Energy conservation: exchange form

G(C, »,q, P, ’U)) = GI(C, P, q) + €[[(p, UJ),

(02—1)2 « 9 1 9
eI:T+§<C—<P) +§HQH
1
611**HPH 25" w?,

one can obtain the following evolution equation for each of the energy parts

%—Fdi <861861): Oeg Oejr H@ez

ot dec Oq Do Ow ’
86[[ div 86[] an 66[ 86[[
ot Op Ow ) dp Ow’
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Numerical scheme

. Some results
Numerical scheme and Results

Numerical methods

In order to solve the model numerically and also compare it with reference solutions,
we propose here:

© A numerical scheme for the original Cahn-Hilliard equation based on 4th order
implicit conservative finite differences

@ Explicit MUSCL-Hancock for the hyperbolic approximation.
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Numerical scheme

. Some results
Numerical scheme and Results

Implicit conservative finite differences for CH

We propose here a semi-implicit conservative in order to solve numerically the original
Cahn-Hilliard equations. We rewrite the latter as follows

%—dlv( )+ A% =0

where F' is the flux given by

F=X(c)Ve, X(c) =32 -1

The scheme writes

At At
n+1 n n—+1 n—+1 n+1 n+1 n+1
Cij A (‘7:@+2,J F- J) Ay <Q g+ -G i ) QZAVAVAG/S
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Numerical scheme

. Some results
Numerical scheme and Results

Computation of the intercell fluxes

The intercell fluxes ]—"’j:“l] and Q”Tl, in the x and y directions respectively, are
27

computed using finite-differences as foIIows

J—_-n—l—l Xn—l-lT (v C)n+1

H-QJ o z+2,] l+2J
n+l,r i n+l,r n+1 T n+l,r  yntlr
Niedi T 12 (7, HTXRT - XY
n+1 ~ 1 n+l n+1 n+l _ ntl
(Ved)ivis ™ "12as (15%14‘ D]+ G — Gy

R n+1
(similarly for gi’ﬂ%)
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Numerical scheme

. Some results
Numerical scheme and Results

Computation of the intercell fluxes

The intercell fluxes ]—"’j:“l] and Q”Tl, in the x and y directions respectively, are
27

computed using finite-differences as foIIows

J—_-n—i-l Xn+1 T (vzc)@—&-l

i+1g " Titig it3.5°
n+l,r i n+l,r n+1 T n+l,r  yntlr
Niedi T 12 (7, HTXRT - XY
n+1 ~ 1 n+l n+1 n+l _ ntl
(Ved)ivis ™ "12as (15%14‘ D]+ G — Gy

He n+1
(similarly for gi’ﬂ%)

These are 4th order approximations.
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Numerical scheme

: Some results
Numerical scheme and Results

Discretization of the bi-laplacian operator

AAhc”+1 is a discretization of the bi-Laplacian operator in the cell-centers as follows

At
n+l _ n+1l n+1 n+1 n+1 n+1
AAth == Al (CFQJ 4c;” it 6c; 4Cz+1] + cl+2’j)
At
o n+l _ 4.n+l n+1 n+1 n+1
Ay (cm_2 4c G- 1-|—60 4czj+1—|—c”+2)
2A¢ ( n+1 — 92 n+1 + n+1 ) n+1
AHZQAy Ci—1 1,7—1 ’L] 1 Cerl,jfl ¢ —1,7
n+1 n+1 n+1 n+1 n+1
FAe T =20 T 2 )
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Numerical scheme

. Some results
Numerical scheme and Results

Discretization of the bi-laplacian operator

AAhc”+1 is a discretization of the bi-Laplacian operator in the cell-centers as follows

At
n+l _ n+1l n+1 n+1 n+1 n+1
AAth = ALl (cZ;Q’] 4c;” it 6c; 4CH1J + cl+2’j)
At
. n+l n+1 n+1 n+1 n+1
Ayl (Ci,j—Z de’ 7 + 60 4c”+1 + c”+2)
2A¢ ( n+1 — 92 n+1 + n+1 -9 n+1
AxQAy Ci1,5-1 -1 T G411 Ci—1,4
n+1 n+1 n+1 n+1 n+1
FAe T =20 T 2 )

System over all the domain is then solved using GMRES (Matrix is not symmetric
positive-definite ...)
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Numerical scheme

: Some results
Numerical scheme and Results

Numerical method for hyperbolic approximation

@ Explicit second-order MUSCL-Hancock scheme

@ We used FORCE and Rusanov approximate Riemann solvers (One could also
implement a Roe solver)
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On the Cahn-Hilliard equations
Hyperbolic Model Derivation
Numerical scheme and Results

Summary of numerical methods —_

Numerical scheme
Some results

Original
Hyperbolic

a semi-implicit
conservative FD scheme on
staggered grids with 4th Muscl-Hancock
order FD for Laplace operators

Explicit
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On the Cahn-Hilliard equations
Hyperbolic Model Derivation
Numerical scheme and Results

Convergence in «: ODE for origm_

Numerical scheme
Some results

CH equation in 1D:

oc 0J d3c 9 dc
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Numerical scheme

. Some results
Numerical scheme and Results

Convergence in a: ODE for original system

CH equation in 1D:
dc 0J e dc

—+—=0 J = 3¢ —1
ot oz Toz5 )oa
Stationary states:
oJ e Oc
= =0, =755 — (3 - 1),
ox ox ox
Oc 0?c
0 0 0 0
J(IL‘()):J ’ C(l‘o):C ) 67 =Cy, 22 =<
T z=aq T | p=z0
which can be written in a first-order system as
Firas DHAOUADI Sixth Workshop on Compressible Multiphase Flows, Strasbourg
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Numerical scheme

. Some results
Numerical scheme and Results

Convergence in a: ODE for original system

CH equation in 1D:

Ooc 0J Foate Jdc
- i -1
TR PR Ak b Bl Ll
Stationary states:
oJ 3e 9 Jc
%—O, J—’y@—(?)c 1)%,
Oc d%c
J(l‘o) = Jo’ 0(1’0) = CO? o = C(I)a 922 = C(I)Ia
r=x0 r=x0

which can be written in a first-order system as
1
d=cy, cdr=cy, = 5 (J + (3¢2 — Der), J' =0,
c(wo) =, er(wo) =¢f,  en(xo) =y, I(xo) = T,
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Numerical scheme

. Some results
Numerical scheme and Results

Hyperbolic counterpart

;@ J = ap —q/T

/ /
= = — —_ = ), :O’
¢'=p, p 7(90 c), 52 1+a ¢

o(zp) = A+ gc%, p(xo) = c?, c(xg) = &, q(xo) = —7J°,

Reminder about original system ODE
/ / / 1 2 !/
d=cr, cr=cyg, cp= ; (J+ (3¢* — 1)01) , J' =0,

c(xp) = &, cr(xo) = c(I), crr(zo) = C%, J(xp) = JO
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Numerical scheme
Some results

Convergence in «

1.0 &

50

0.5 o
0 L

& 00 5 0

Iy T2
o —U. —

= 50

~1.0 _rsl
[—é= cla=25)+ c(a=100) | =&+ pla = 25) = pla = 100)
1 1 1 1
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
z[—] z[-]

Figure 1: Comparison of a stationary solution of the hyperbolic Cahn-Hilliard model
(discontinuous lines) with the original counterpart (solid line) for different values of the penalty
parameter «.
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Numerical scheme

. Some results
Numerical scheme and Results

Convergence table in «

o lle—¢ll,, Ilp=Vell,, lle=wll, Olc—¢) OP-Ve) Oc—9)
25 264 x107' 566x10"! 7.01x1073 — - -

50 1.35 x 1071 3.02x 107" 3.51x107% 0.96 0.90 0.99

100 6.82x1072 154x107' 1.75x107% 0.99 0.97 0.99

400 1.70 x 1072 3.86x 1072 4.39x10~* 1.00 0.99 0.99
1600 3.80 x 1073 8.64x 1073 1.10x10~* 1.08 1.08 1.00

Table 1: Convergence table for the Lo errors when comparing the numerical Cauchy problem
solutions for the hyperbolic model with the the original Cahn-Hilliard equation.
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Numerical scheme

. Some results
Numerical scheme and Results

Exact solution for the original equation

One can find a family of exact one-dimensional stationary periodic solutions to the
Cahn-Hilliard system expressed as

ce(x) =1 —€sn (1/6;;/1(:6—1‘0), 1;§)

Here, sn(z, s) is the Jacobi elliptic sine function, and s is the elliptic modulus.
€€ [0,1].
It is worthy of note that in the limit ¢ — O corresponding to s — 1, one recovers the

well-known solution
T — X0
¢(x) = tanh ( >
V2y

as a particular case.
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Numerical scheme
Some results

Exact elliptic function solution

1.0 20

0.5 10

— 00 0
=

—0.5 ~10

~1.0 —20

| =c(w,t =0) = clz,t = 10) * p(x,t = 10) | 20 | =co(e,t=0) = colw,t =10) = p(z,t = 10) ||
0 \/2 A 3\/2 2 0 \/2 A 3\/2 2

z[-] (-]
Figure 2: v = 0.001. Computational domain is [0, 2], discretized over N = 2000 cells.
B8=10"% o =500 and 7 = 8.10~*. CFL = 0.95 and final simulation time is ¢ = 10.
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Numerical scheme

. Some results
Numerical scheme and Results

Spinodal decomposition

We suggest the following initial data

(2) = 0.01 ((sin(107(1 + z)) —sin (107 (1 + )?)), if z € [-1,0]
| -0.01 ((sin(107(1 — z)) — sin (107(1 — x)?)), if = € [0,1].
This function is built in such a way that it is C*> over [—1, 1] as well as over R by
periodic prolongation.

t =0.00
0.]. T T T

] AN A SVAVAY A VA
Q

_0.1 1 1 1
—1.0 —-0.5 0.0 0.5 1.0

roa
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On the Cahn-Hilliard equations
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Numerical scheme and Results

Spinodal decomposition (7 = 1073, 8 = 10", a = 500, 7 = 1079)

Numerical scheme
Some results

=000 t=0.02 t=0.10
0.10 — Lo Lo
0.05 g 05 J 05 ]
T T T
= (),uulv/\/\.\/\lfv»\/\//\; = 00 = o0 1
| | |
< < <
—0.05 4 —0.5F —0.5F
o010 L —ob oo 4 cr0b o 4
210 —05 00 05 10 ~1.0 —05 00 05 1.0 ~10 —05 00 05 10
(-] -] 2[-]
=095 =096 t=4.00
1.0 ] e e 10 —
0.5 _o0sf 05
i i
0.0 =00 =00
| |
5 - -
~05 —0.5 1 7 o5
~1.0 e —Lof M 4 - L™
~10 05 00 05 10 —1.0 —05 00 05 10 —1.0 —05 00 05 10
-] al-] -]

Figure 3: Comparison of the numerical results between the original model (orange) and its
hyperbolic counterpart (black). N = 2000 computational cells.
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Numerical scheme
Some results

Ostwald Ripening in 1D (y =103, 8 =107, a = 500, 7 = 10~ %)

t=0
T T T
1.0 1.0 1.0
0.5 05 05
| |
0.0 < 00 <00
| |
= -
~0.5 0.5 0.5
71.0_ 1 1 1 _10 1 1 1 _10 1 1 1
0.0 025 05 075 1.0 0.0 025 05 075 1.0 0.0 025 05 075 1.0

(-] (-] (-]

Figure 4: Comaprison of the numerical solutions for hyperbolic Cahn-Hilliard model (black line)

and the original model (red dots)for the Ostwald Ripening test case at times ¢t = {0,0.1,0.3}.
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Numerical scheme

. Some results
Numerical scheme and Results

Stationary Bubble

we numerically solve the time-dependent Cahn-Hilliard equation in radial coordinates

oc 10 0 [ 4 v 0 ([ Oc B 55
8t_rar<r8r<c _c_r(f?r(rar)))_o’ TEVEAYS
and we consider the following initial guess

co(r) = — tanh (7"_\/%5> ,

We use the same scheme presented earlier for the original Cahn-Hilliard equations.
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Stationary Bubble

we numerically solve the time-dependent Cahn-Hilliard equation in radial coordinates

oc 10 0 [ 4 v 0 ([ Oc B 55
8t_rar<r8r<c _c_r(f?r(rar)))_o’ TEVEAYS
and we consider the following initial guess
r—0.5
co(r) = —tanh( ) ;
) V2y

We use the same scheme presented earlier for the original Cahn-Hilliard equations.
(Pseudo-transient continuation methods).
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Stationary bubble(y = 1073, = 10~7, & = 1000, 7 = 10 )
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Figure 5: Left: 2D color plot of the radial stationary solution. Right: radial cut of the
numerical solution along the line y = 0 at ¢t = 1 (black line), compared with the exact solution

Ces, provided as initial data (red dots). Domain is 500 x 500
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Ostwald Ripening in 2D(v = 1073, 8 = 107", & = 500, 7 = 10°)
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Ostwald Ripening in 2D : horizontal Cuts
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Figure 6: Horizontal cuts over the lines y = 0 (red) and y = 0.4 (black). Domain is 600 x 720
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Conclusion and Perspective

@ We presented a new formulation for an approximate hyperbolic Cahn-Hilliard
system.

@ An original scheme was conceived to solve the original equation using conservative
finite differences.

@ Comparison of results showed excellent agreement between the results in one and
two dimensions.

Perspectives
@ Better formulation fully from variational principles if possible.
@ Extension to Navier-Stokes Cahn-Hilliard systems.
@ Investigation of bound-preserving properties.
o Semi-implicit discretization, asymptotic preserving schemes, time-step

optimization, etc ...
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Thank you for your attention !

[1] Dhaouadi, Firas, Sergey Gavrilyuk and Michael Dumbser. " A first-order hyperbolic approximation
to the Cahn-Hilliard equation.” To be submitted soon
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