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Introduction : Euler’s equation for compressible fluids

A Lagrangian :

L(ρ,u) =

∫
Ωt

(
ρ |u|2

2
− ρe(ρ)

)
dΩt

A Constraint :
ρt + div(ρu) = 0

=⇒ The corresponding Euler-Lagrange equation:

(ρu)t + div (ρu⊗ u + p(ρ)) = 0; p(ρ) = ρ2e ′(ρ)
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Dispersive models in mechanics

1 Surface waves with surface tension [Nikolayev, Gavrilyuk,
Gouin 2006] :

L(u, h,∇h) =

∫
Ωt

(
ρ0h |u|2

2
− ρ0gh

2

2
− σ |∇h|

2

2

)
dΩt

2 Shallow water equations described by Serre-Green-Naghdi
equations [Salmon (1998)]:

L(u, h, ḣ) =

∫
Ωt

(
hu2

2
− gh2

2
+

hḣ2

6

)
dΩt
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Euler-Korteweg type systems

L(u, ρ,∇ρ) =

∫
Ωt

(
ρ |u|2

2
− A(ρ)− K (ρ)

|∇ρ|2

2

)
dΩt

{
∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = ρ∇

(
K (ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)
K (ρ) = σ : constant capillarity

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = σρ∇ (∆ρ)

K (ρ) = 1
4ρ : Quantum capillarity / NLS equation (Shark 2018)

∂t(ρu) + div(ρu⊗ u + 1
4ρ∇ρ⊗∇ρ) +∇

(
ρ2

2 −
1
4 ∆ρ

)
= 0
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The goal

Consider the following equations [Richard, Ruyer-Quil, Vila 2016]:

ht + (hu)x = 0

(hu)t +

(
hu2 +

h2

2F 2
cosθ +

2λ2h5

225

)
x

=
1

εRe

(
λh − 3u

h

)
+

κ

F 2
hhxxx

Main Question

Can this system be solved by means of hyperbolic equations ?

Abstract

Yes.
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Equations for thin films flow

We want to create a first order hyperbolic system of equations
which approximates :

ht + (hu)x = 0

(hu)t +
(
hu2 + h2

2F 2 cos θ + 2λ2h5

225 + κ
2F 2 h

2
x − κ

F 2 hhxx
)
x

= 1
εRe

(
λh − 3u

h

)
h and u are respectively the nondimensional fluid depth and
average velocity.

ε = h0
L � 1
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The corresponding Lagrangian

For the non frictional part of the previous set of equations

L(u, h,∇h) =

∫
Ωt

(
h
|u|2

2
− A(h)− κ

F 2

|∇h|2

2

)
dΩt

where : A(h) =
cosθ

2F 2
h2 +

λ2

450
h5

Energy conservation law:

∂E

∂t
+ div(Eu + Πu− κ

F 2
ḣ∇h) = 0 ; ḣ = ht + u · ∇h

where

E = h
|u|2

2
+ A(h) +

κ

F 2

|∇h|2

2
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Extended Lagrangian approach

The objective

Obtain a new Lagrangian whose Euler-Lagrange equations :

are hyperbolic

accurately approximate thin films equations in a certain limit

The idea

Decouple ∇h from u and h, have it as an independent
variable.
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Extended Lagrangian approach

SW Lagrangian :

L(u, h,∇h) =

∫
Ωt

(
h
|u|2

2
− A(h)− κ

F 2

|∇h|2

2

)
dΩt

’Extended’ Lagrangian approach [Favrie, Gavrilyuk, 2017]

L̃(u, h, η,∇η, η̇) p = ∇η w = η̇

L̃ =

∫
Ωt

(
h
|u|
2

2

− A(h)− κ

F 2

|p|
2

2

− h

2α

(
1− η

h

)2
+
βh

2
w2

)
dΩt

h

2α

(
1− η

h

)2
: Penalty

βh

2
η̇2 : Regularizer
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Extended system Euler-Lagrange equations

The extended Lagrangian :

L̃ =

∫
Ωt

(
h
|u|2

2
− A(h)− κ

F 2

|p|2

2
+ β

h

2
w2 − h

2α

(
1− η

h

))
dΩt

The constraint :
ht + div(hu) = 0

=⇒ We apply Hamilton’s principle :

a =

∫ t1

t0

L̃ dt =⇒ δa = 0
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Types of variations

Two types of variations will be considered :

L̃(

I︷ ︸︸ ︷
u, ρ, η̇, η,∇η︸ ︷︷ ︸

II

) η̇ = ηt + u · ∇η

Type I : Virtual displacement of the continuum:

δ̂h = −div(hδx) δ̂u = δ̇x−∇u · δx δη̇ = δ̂u · ∇η

Type II : Variations with respect to η

δ∇η = ∇δη δη̇ = (δη)t + u · ∇δη
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Extended system Euler-Lagrange Equations

Type I : Virtual displacement of the continuum:

(hu)t + div (hu⊗ u + P) = 0

with P =
(
hA′(h)− A(h)− κ

2F 2
|p|2 +

η

α
(1− η

h
)
)
Id+

κ

F 2
p⊗p

Type II : Variations with respect to η:

(hw)t + div

(
hwu− κ

βF 2
p

)
=

1

αβ

(
1− η

h

)
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Closure of the system

w = η̇ = ηt + u · ∇η =⇒ (hw)t + div(hηu) = 0

∇w = ∇(ηt + u · ∇η)

= (∇η)t +∇(u · ∇η)

=⇒ (∇η)t +∇(u · ∇η − w) = 0

=⇒ pt + div((p · u− w)Id) = 0
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The full extended system



ht + div(hu) = 0

(hu)t + div (hu⊗ u + P) = 0

(hη)t + div(hηu) = hw

(hw)t + div
(
hwu− κ

βF 2p
)

= 1
αβ

(
1− η

h

)
pt + div ((p · u− w) Id) = 0; curl(p) = 0

P =
(
hA′(h)− A(h)− κ

2F 2
|p|2 +

η

α
(1− η

h
)
)
Id +

κ

F 2
p⊗ p

Closed system.

What about hyperbolicity ?

Values of α and β ?
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One-dimensional case:

In 1-d, the system reduces to :

ht + (hu)x = 0

(hu)t +
(
hu2 + h2

2F 2 cos θ + 2λ2 h5

225 + κ
2F 2 p

2 + η
α

(
1− η

h

))
x

= 0

ηt + uηx = w
wt + uwx − κ

βhF 2 px = 1
αβh

(
1− η

h

)
pt + upx + pux − wx = 0

Reminder: The original equations we approximate :

ht + (hu)x = 0

(hu)t +
(
hu2 + h2

2F 2 cos θ + 2λ2h5

225 + κ
2F 2 h

2
x − κ

F 2 hhxx
)
x

= 1
εRe

(
λh − 3u

h

)
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Relaxation / Couplings

wt + uwx︸ ︷︷ ︸
ẇ

− κ

βhF 2
px =

1

αβh

(
1− η

h

)

⇒ h − η = αβh2ẇ − ακh
F 2

px

⇒ hx − ηx = hx − p = αβ
(
h2ẇ

)
x
− ακh

F 2
pxx

⇒ η

α

(
1− η

h

)
= βhẇ − κ

F 2
px = − κ

F 2
ηxx +O(β)
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One-Dimensional case : Hyperbolicity

In order to study the hyperbolicity of this system, we write it in
quasi-linear form :

∂U

∂t
+ A(U)

∂U

∂x
= 0

where:
U =

(
h, u,w , p, η

)T

A(U) =


u h 0 0 0

1 + cosθ
F 2 + η2

αh3 u 0 κ
hF 2

1
αh

(
1− 2η

h

)
0 0 u − κ

βhF 2 0

0 p −1 u 0
0 0 0 0 u
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One-Dimensional case : Hyperbolicity

The eigenvalues ζ of the matrix A are :

ζ = u, ζ = u ±

√
b ±
√
b2 − 4c

2
.

b =
κ

βhF 2

(
1 + βp2

)
+

cos θ

F 2
h +

2

5
h4 +

η2

αh2
> 0

c =
κ

βF 2

(
cos θ

F 2
+

2

5
h3 +

η2

αh3

)
> 0

=⇒ the system is always hyperbolic
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Adding back the source terms

Finally :

ht + (hu)x = 0

(hu)t +
(
hu2 + p(h) +

κ

2F 2
p2 +

η

α

(
1− η

h

))
x

=
1

εRe

(
λh − 3u

h

)
ηt + uηx = w

wt + uwx −
κ

βhF 2
px =

1

αβh

(
1− η

h

)
pt + upx + pux − wx = 0

What about α and β ?
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Values of α and β

Values have to be assigned : a criterion is needed.

We can base this choice, for example, on the dispersion
relation.

Dispersion relation

We consider the small monochromatic perturbation of a constant
equilibrium state U0 = defined by :

U(x , t) = U0 + U′e i(kx−ωt)

Then we look for cp = ω
k
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Dispersion relation for the original system

We linearize the system around a constant state (h0, u0 = λh2
0/3)

⇒ The phase velocity satisfies :

(u0 − cp)2 − ib(u0 − cp)− (a + 2ibu0) = 0

with a =
cosθh0

F 2
+

2λ2h4
0

45
+ κ

k2

F 2
; b =

3

kεReh2
0

We want :

1 values of cp.

2 neutral stability condition.
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Dispersion relation for the original system

Instead of calculating exact values of cp, we make expansions in a
power series of the parameter ε :

cp = cp0 + εcp1 +O(ε2)

cp′ =
1

ε
cp′−1 + cp′0 + εcp′1O(ε2)

For the original system this gives :

cp = 3u0 −
iReh2

0

3
((
cosθ

F 2
+

5λ2h3
0

K0
+ κ

k2

F 2
)h0 − 4u2

0)kε+O(ε2)

cp′ =
−3iu0

Reh3
0kε
− u0 −

iReh2
0

3
((
cosθ

F 2
+

5λ2h3
0

K0
+ κ

k2

F 2
)h0 − 4u2

0)kε+O(ε2)
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Neutral stability analysis

Since we are considering solutions which are proportional to
e i(kx−ωt), a necessary stability condition is :

Im(ω) < 0⇐⇒ Im(cp) < 0

Putting this inequality in the charactersitic polynomial gives ( after
some terrible calculations ) :

cotgθ +
κk2

sinθ
>

6Re

5
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Neutral stability curves

Figure 1: Plot of the critical stability curve (θ = 6.4◦)
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Liu & Gollub’s experiment (1994)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x(m)

0.6

0.8

1.0

1.2

1.4

1.6

h
/h
0

Figure 2: The Liu-Gollub experiment. The curve is the dimensionless
depth of the wave profile in a 2.0 meter long canal, obtained with a
forcing frequency f = 1.5Hz, imposed at the left boundary.
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Dispersion relation for the extended model

Back to α and β. The suggested choice should be such that

1 The neutral stability analysis is consistent for both models.

2 The phase velocities are consistent to the first order for
example.

Therefore we pose : α = εm and β = εp,calculate the
characteristic polynomial for the augmented system and make
expansions of the phase velocities as previously.

Main result

Consistency to the first order : m > 1 and p > 2
or equivalently : α < ε and β < ε2
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Neutral stability consistency

0 5 10 15 20 25 30

0

5

10

15

20

Figure 3: Comparison of both original(blue) and augmented model
stability curves, or two sets of α, β.
orange : θ = 6.4◦, α = 0.01,β = 0.00003
green: θ = 6.4◦, α = 0.1,β = 0.0001
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Numerical scheme: IMEX-Type

1-d system of equations to solve :

∂U

∂t
+
∂F

∂x
= S(U)

The idea is to solve the hyperbolic part explicitly and the source
term implicitly in time according to the scheme :

U? = Un − γ ∆t

∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
+ γ∆tS(U?)

Un+1 = Un − (γ − 1)
∆t

∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
− (2− γ)

∆t

∆x

(
F ?
i+ 1

2
− F ?

i− 1
2

)
+ (1− γ)∆tS(U?) + γ∆tS(Un+1)
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Numerical scheme : Riemann solver

Riemann Solver: HLL-Rusanov.

Fi+ 1
2

=
1

2

(
F(Un

i+1)− F(Un
i )
)
− 1

2
κn
i+ 1

2

(
Un

i+1 −Un
i

)
where κn

i+ 1
2

is obtained by using the Davis approximation :

κni+1/2 = max
j

(|cj(Un
i )|, |cj(Un

i+1)|),

where cj are the eigenvalues of the extended system.
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One last step before results

In order to compare with numerical results, viscosity must be
added to the model :

(hu)t +

(
hu2 +

h2

2F 2
cosθ +

2λ2h5

225

)
x

=
1

εRe

(
λh − 3u

h

)
+

κ

F 2
hhxxx

+
9ε

2Re
(hux)x

On the discrete level, we use centered finite differences :

(hux)x =
(

(hux)i+ 1
2
− (hux)i− 1

2

)
/∆x

(hux)i+ 1
2

= hi+ 1
2

(ui+1 − ui−1) /∆x
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Numerical result : f=1.5Hz
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Figure 4: Numerical simulation of the Liu-Gollub experiment. The curve
is the dimensionless depth of the wave profile in a 2.0 meter long canal,
obtained with a forcing frequency f = 1.5Hz, imposed at the left
boundary.
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Numerical result : f=1.5Hz

 0.6
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 1.7

 1.2  1.4  1.6

Figure 5: Comparison of the numerical simulation of the Liu-Gollub
experiment with experimental data for f=1.5Hz (α = 0.005,
β = 0.00003, ε = 0.0067, nx=4000 ) boundary.
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Numerical result : f=3.0Hz
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Figure 6: Comparison of the numerical simulation of the Liu-Gollub
experiment with experimental data for f=3.0Hz (α = 0.005,
β = 0.00003, ε = 0.0067, nx=4000 ) boundary.
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Numerical result : f=4.5Hz

Figure 7: Comparison of the numerical simulation of the Liu-Gollub
experiment with experimental data for f=4.5Hz (α = 0.005,
β = 0.00003, ε = 0.0067, nx=4000 ) boundary.
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Conclusions - perspectives

Conclusions :

We presented an approximate first order hyperbolic model for
thin film flows based on an augmented Lagrangian method.

The resulting system of equation is quite consistent with the
original model.

Preliminary tests look okay and are not expensive (5-6 times
smaller timestepping)

Perspectives:

Extension to the multidimensional case.

Apply the same technique to the three equations model (with
enstrophy)

Further optimization of the numerical resolution.
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Thank you for your attention :) !
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