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Diffusion equations

@ Many phenomena in nature are described by diffusion-type
equations

© Fick’s second law for particle concentration

%—f = div (DV )
@ Fourier's law for heat conduction leads to

T

%—t = div (K'VT)

Q etc ...

Very "simple” structure, compares well with experimental
observations.
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Objective

We would like to provide first-order hyperbolic alternatives to the
following systems

© Euler equations supplemented by Fourier heat conduction

dp :
—F = 1
5 T div(pu) =0, (1a)
0
% +div (pu ® u + p(p,n)I) = 0, (1b)
OF
-5 T div(Butplp,n)u-KVi(p.n)=0.  (Ic)
© Cahn-Hilliard equations
dc 3
- — —c— : 2
5 A (¢’ —c—yAc) (2)
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Why are we doing this?

© Restore the principle of causality :
information must not travel faster than light speed in vacuum.
(Trivially violated by Laplace operator)

@ Symmetric hyperbolic equations are well-posed.

© Obtain an alternative description of known phenomena.

© Chance it provides much easier/faster numerical simulations.
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Plan of presentation

@ A hyperbolic model for heat conduction in compressible flows
@ Model Derivation
@ Hyperbolicity
@ Numerical results

© A hyperbolic model for Cahn-Hilliard equations
@ Hyperbolicization approach
@ Numerical scheme

@ Results

© Conclusion and Perspectives
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A hyperbolic model for heat conduction in compressible flows Model Derivation
Hyperbolicity
Numerical results

Objective properties

We want to obtain a model that satisfies the following properties

© First-order hyperbolic system

@ Can be cast into a Friedrichs symmetric form

© Total Energy is conserved

© Compatible with the second law of thermodynamics
© Gallilean invariant

© can be derived from a variational principle
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A hyperbolic model for heat conduction in compressible flows Model Derivation
Hyperbolicity
Numerical results

About Euler-Lagrange equations

Given a Lagrangian, you can derive the Euler-Lagrange equation

: d (0L . (0L oL
cwirs0 = 5 (5) o (55) -5
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About Euler-Lagrange equations

Given a Lagrangian, you can derive the Euler-Lagrange equation

. d (0L . oL oL
cavsi — () o (4L) -2

Things are already more complicated for Euler equations

L(p;u) = /Qt (%pHUHQ — pe(p; n)) ds,

: 0dx Odx ou
op = —div (pdx), du= 5 + o U a—xdaz
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Numerical results

About Euler-Lagrange equations

Given a Lagrangian, you can derive the Euler-Lagrange equation

. oL oL oL
cuvs = (1) () -2

Things are already more complicated for Euler equations

L(p;u) = /Qt (%pHuHZ — pe(p; n)) ds,

: 0dx Odx ou
op = —div (pdx), du= 5 + o U a—xdaz

After a bit of calculus = % + div (pu @u+p g I) =0
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A hyperbolic model for heat conduction in compressible flows Model Derivation
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Numerical results

Euler equations for compressible fluids

% + div (pu) =0, (mass)

dpu .

o + div (pu @ u+ p(p,n)I) =0, (momentum)
0

% +div (pnu) = 0. (entropy)
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A hyperbolic model for heat conduction in compressible flows Model Derivation
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Numerical results

Euler equations for compressible fluids

0
gp +div (pu) =0, (mass)
ot
dpu .
o + div (pu @ u+ p(p,n)I) =0, (momentum)
dpn .. _
5 T div (pnu) = 0. (entropy)
Summing up these equations yields the energy conservation
equation
OF :
5 T div (Eu+p(p,nju) =0. (Energy)

Firas DHAOUADI ProHyp 2024, Trento 8/37



A hyperbolic model for heat conduction in compressible flows Model Derivation
Hyperbolicity
Numerical results

Thermal displacement (Green-Naghdi 1991)

In this paper :

[1] Green, A. E., & Naghdi, P. (1991). A re-examination of the basic postulates
of thermomechanics. Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, 432(1885), 171-194.

The authors introduce an independent auxiliary potential ¢(x,1) as
a thermal analogue of the kinematic variables such that

o(x,t) = —0(x,t)

One can then write the Lagrangian

Lpoud) = | (gpuuw o (p, @) a0,

where -
. . €

e(p,n) = (p, ) — no, ith n=—.

(p,m) (p,®) —no, with 7 ¥
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Entropy as an Euler-Lagrange equation

Given the Lagrangian

: : .0
L(p,u,d) = /Q (%pHuHQ—pe*mﬁ)) s, (¢ (;f+u w)
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Entropy as an Euler-Lagrange equation

Given the Lagrangian

) . . 0
Llpoud) = [ (%mrurr?—pe*(p,qb)) a0, (¢ %0 4. w)

One obtains

% + div (pu®u+p2%€p I)
0 [ Oe Oc*

— — | +di . =0, Euler-Lagrange for 9
8(pa¢> V( ¢ > ( grange for 09)

0, (Euler-Lagrange for dx)
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Entropy as an Euler-Lagrange equation

Given the Lagrangian

. 1 . . 0
Lpoud) = [ (5puuu2—pe*<p,¢>) a0, (¢ %0 . w)

One obtains

% + div (pu ®u+ p 2087 ) =0, (Euler-Lagrange for dx)

Op
0
pm (pn) + div (pnu) = 0, (Euler-Lagrange for §¢)

% + div (pu) =0 (Constraint)

@ A similar idea was also used in Lagrangian coordinates in
Peshkov et.al. (2018).
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Extension of Green-Naghdi's philosophy

Consider the Lagrangian

L vo.d) = [ (épuurr?—pe*(p,qb)éa@)vw) 10,

where the function «(p) is an arbitrary positive function of density.
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Extension of Green-Naghdi's philosophy

Consider the Lagrangian

£(p.90,6) = [ (Gollf = p="(p6) 0l [V0l) a

where the function «(p) is an arbitrary positive function of density.

% + div (pu) = 0,

dpu :

5 tdiv(pu@u+t P(p, Vo) T+ alp) Vo ® Vé) =0,
d

é)pn + div (pnu + a(p)Ve) = 0,

de* 1,
where P(p, V) = o5+ 5 (o0l (p) = a(p)) IV 9
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Extension of Green-Naghdi's philosophy

Consider the Lagrangian

) 1 . 1
L vo.d) = [ (§puuu2—pe*<p,¢>§a<p>v¢2) 10,

where the function «(p) is an arbitrary positive function of density.

Op : -
" + div (pu) = 0,
dpu ,
— - +div (pu@u+ P(p, Vo) I+ a(p) Vo @ V) =0,
0
% + div (pnu + a(p)Ve) = 0,
00 1, 2
where P(p,V¢) =p 9 + 5(004 (p) —a(p)) V9]

@ Problem : PDE is of second order and depends on V.
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Solution: First-order reduction _

Recall that

9,
8—f+u-V¢=—9(/},n)
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Solution: First-order reduction _

Recall that

V(%) 4 via- Vo) = V0o )
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A hyperbolic model for heat conduction in compressible flows Model Derivation
A hyperbolic model for Cahn-Hilliard equations Hyperbolicity
Conclusion and Perspectives Numerical results

Solution: First-order reduction

Recall that

v (g—f) +V(u-V¢)=-V(0(p,n))

%+V(U'V¢+9(pm))=0
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Solution: First-order reduction

Recall that
O
Vg ) +Vu-Ve)=-Vid(p,n)
A
—8t¢ +V(u-Vo+0(p,n) =0
Let us introduce j = V¢ as an independent variable. Then j
satisfies
9]

§+V(H-J+9(p,n))=0
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Dissipationless system of equations

o
9P 4 div (pu) = 0,

+div(pu@u+1I) =0, II=Pp,nj I+alp) ji®k]j

_|_

(a») /\
Q
|

|
VR
Q
|
N————
N
N—
o
I
=

ot
dpu
ot
0j
ot
dpn .. o
5 Hdiv(pnu+alp)j) =
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Dissipationless system of equations

% + div (pu) = 0,
dpu , . .
- Tdv(pueu+ll) =0, II=Plp.n.j) I+alp) jo]
0; . A (V. _
5 TV @-utdpn)+ (g - (8—X> u =0,
0
% + div (pnu + a(p)j) = 0
Total energy conservation is obtained as a consequence
OF : :
-7 Tdiv(Pu+Tuta) =0, a=al(p)0(p.n)]
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Dissipationless system of equations

% + div (pu) = 0,
dpu , . .
-5 tdv(pu@u+I) =0, II=Plp,n.j) I+alp)j®]
) . G (%\"). _
5 TVU-utolpn)+ (g - ((Tx) u =0,
0
% +div (pnu + a(p)j) = 0
Total energy conservation is obtained as a consequence
OF , .
5 Tdiv(ButIuta) =0, a=a(p)0(p.n)]

Additional term in the energy conservation is heat flux.
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Rayleigh dissipation function

0
9P div (pu) = 0,

ot
0
== +div(pu@u+ P(p,n.j) I+a(p) j @) =0,
dj , dj G\ = IR
dpn a(p) IR .

0(p,n) 0Oj

Here R is the Rayleigh dissipation function and which we take in
the simplest form as

5 Hdiv(pnu+alp)j) =

1 oOR 1
R: — 117 2 _— = —1
27_H-]H ) aj 7_.]
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Energy convexity

Total energy is given by
1

: 1 2 .12
E(p,m,s,j) = %Hmll +pe(p,s/p)+5alp) I, m=pu,s=pn

Sufficient criterion for energy convexity

7 (w0)
if <0, forp>0.
Ip* \ a(p) £

then E i s also a convex function of Q.

We choose a simple function fitting this criterion

a(p) = —, = cst.
p
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Numerical results

Energy convexity

Total energy is given by

. 1 2 1 12
E(p,m,s,j) = %Hmll +pe(p,s/p)+5alp) I, m=pu,s=pn

Sufficient criterion for energy convexity

. 0? ( 1 )
if <0, forp>0.
Op* \ a(p) £

then E i s also a convex function of Q.

We choose a simple function fitting this criterion

a(p) = —, = cst.

(Another possibility is a(p) = cst, taken in Peshkov et.al. (2018))
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Hyperbolicity

system can be cast into quasilinear form

Y v

ar AV =0

where A admits 8 eigenvalues whose expressions are given by

(X1 =u1 — V21 + Zs,

1
X2 = u1 — \/ 21 — Za, ZQZ\/CL;T—FZ(CL]%—CL%>2,
§ X3-6 = U1 where < 5
’ Op 2 00
2 2
X7 =u1+ 21— 2o, =9y T 2oy
X8 = U1 + v 21+ 2y , %2 0poe 2_2%2<
\apT_ 02 On dp aj = 73
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1D-study: Eigenfields

In one dimension of space, we can write the system as

ot +u%+p8p8$ p@n@x:
on on 3 0j %2_(9p_
ot +“’ax+ p? Ox ,03‘7856_0’

dj  .Ou dj 000p 000n
ot oz " Vor Topor  onow

The eigenvalues are given by

(A =u— VY 1 Vs, v,
Ao =u—+Y] — Y-
2 U 1 2, Where <1/2: aéT—I_}/ng
A3 =u+ Y1 — Yo, v

_1(,2_ .2
k)\4:u—|—\/Y1+Y2, \Y}’_ 2 (a’p a’T)'

Firas DHAOUADI ProHyp 2024, Trento 17 /37
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1D-study: Eigenfields

)

Al =u—+VY + Y, fY1—1<a2—|—a%)
2 \p )

A =u—+\Y — Y5

{7 " L where Yy =, /al, + Y2

Ag =u+ VY -1, 1 p2 2

M =u+ VY Y5, Y3 =5 (@ —a7).

Nature of the eigenfields (polytropic gas equation of state):

@ System admits full basis of eigenvectors.

Firas DHAOUADI ProHyp 2024, Trento 18 /37



A hyperbolic model for heat conduction in compressible flows Model Derivation
Hyperbolicity
Numerical results

1D-study: Eigenfields

)

Al =u—+VY + Y, fY1—1<a2—|—a%)
2 \Gp ;

N = u — Y, = Y,

4 2= ! 2 where <Y2:«/a4T+Y:32,

A3 =u+ VY — Y, 1 p2 2

M=u+ VT T Vs, s =3 (ap —a7).

Nature of the eigenfields (polytropic gas equation of state):
@ System admits full basis of eigenvectors.

o Eigenfields associated to \j 4 are genuinely non-linear.
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1D-study: Eigenfields

)

A =u—VY1 + Yo, ’Y1_1<a2+a%)
2 \Up )

No = u— Y, Y

! “ L where Yy =, /al, + Y2

A3 =u+ VY — Y, 1 pz 2

M= u+ VY1 T Y, Y5 =3 (a4 —a7).

Nature of the eigenfields (polytropic gas equation of state):
@ System admits full basis of eigenvectors.
o Eigenfields associated to \j 4 are genuinely non-linear.

o Eigenfields associated to Ag 3 are neither genuinely non-linear,
neither linearly degenerate.
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Hugoniot Locus (polytropic gas equation of state)

5) =
— P
4+ P
3L _
Ry
2L _
Lr \\
O | | | |
0.7 1 1.3 1.6
v

Study of the Hugoniot curves shows interesting possible solutions:
@ Expansion shocks,
@ Compression fans,

@ Compound shocks.
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A hyperbolic model for heat conduction in compressible flows
A hyperbolic model for Cahn-Hilliard equations
Conclusion and Perspectives

Compound shocks

R compression fan dz _ P
\ dt ol
A\ \
4 7 4 4 V4 ’ P ,‘
/ / / / / 7’ s
/ / 4 / V4 7
A Y -7
/I / ’/ ’
’ 4
> 7’ ' d
/ / I’ /, /,
S S ) ol s s
// /’ // f', ’/ /,
/ /7 7 4 4 ,,/ ,,/
/ / V4 /
/ ’ U ’ e R
/ / / / '
P Y -7
// // / 14 ’
/ / /
Vi Vi Zz Vi Vi @

Figure 1. Schematic representation of the wave pattern in the x — ¢
plane, for a compound shock splitting solution. The shock propagates to
the right, followed by a right facing compression fan.

Firas DHAOUADI ProHyp 2024, Trento 20/37



A hyperbolic model for heat conduction in compressible flows Model Derivation
Hyperbolicity
Numerical results

Recovery of Fourier law: Shock tube problem

| | | | ’ I I I I 1 —20 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

a[m] z[m] a[m]

Figure 2: Shock tube with heat conduction. The solution is given at final
time ¢ = 0.2. Parameters: CFL = 0.9, Y= 5/3, cy =3/2, K =1073.
Relaxation time is taken as 7 =

a(po) 9(/?0,770)
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A hyperbolic model for heat conduction in compressible flows

Expansion shock solution

Model Derivation
Hyperbolicity
Numerical results

—t=05 I 0
t=0.0 ; -
; ~0.03
i T —0.06
i E_
5 =-0.09
E —0.12
w w w w ~0.15
0 02 04 06 08 1
z[m]
— t=05] | e 1.16
t=0.0 :
5 1.12
i 1 X108
' 5
§ 1.04
[ [ E [ | 1
0 02 04 _ 06 038 1
z[m]

—t=05] | s
t=0.0
i &
‘f'e
I 7
g
| >
=
r o8
| 1 | |
0 0.2 0.4 0.6 0.8
z[m]
I T
: T
L E :
i =,
L : =
— t=05
- t=0.0 | tereeeeeee ‘
0 0.2 0.4 0.6 0.8
z[m]

if—¢t=05
t=0.0
0.98}
0.96}-
0.94}
0.92 ‘ ‘ ‘ :
0 02 04 _ 06 08
x[m]
0.25F I
0.21 5
0.150 :
0.1} §
0.05 i
—t=205 ;
ol -t = 0.0 | — S ‘
0 02 04 _ 06 08
x[m]

Figure 3: Numerical result for an expansion shock solution on the
computational domain [0, 1], discretized over N = 10000 cells displayed
at final time t = 0.5. Parameters: CFL =0.9, v =2, ¢y =1, » = 0.8.
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Compound shock solution

—t=1.0 1.2 ‘ —t=10
—~ \ t=20 __ - £=20
(]
| \2 ol | qu 1.15+
X 11
o g i 7
J ‘w 1L 4 >
g X.1.05} i
=
Ok 1 T 1 1 | I
0.1 —0.1  —0.05 0 0.05 0.1 —-0.1 —0.05 0 0.05 0.1
Z[m.s™1) Z[m.s™1]
1C 0OF T
0.95- . é -1 :
X
— 0.9L 1 X —al i
1 B
= 0.85 4 7 -3 i
] : .,
0.8 —t=10f X7 —t=10
1 ; : 075 : : - =20 s ; : - t=20
—0.1 —0.05 0 0.05 0.1 ~0.1 —0.05 0 0.05 0.1 —0.1 —0.05 0 0.05 0.1
Z[m.s™ 1) Z[m.s™ 1) F[m.s71]

Figure 4: Compound shock plotted as a function of the self-similar
coordinate & = (x — D,t)/t. CFL=0.9, vy =2, cy =1, 2= 1.3.
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© A hyperbolic model for Cahn-Hilliard equations
@ Hyperbolicization approach
@ Numerical scheme
@ Results
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Hyperbolicization approach
A hyperbolic model for Cahn-Hilliard equations Numerical scheme
Results

About Cahn-Hilliard equations

The Cahn-Hilliard equation is given by

oc

5 = A (03 —c— 'yAc)

dF
It admits the following Lyapunov functional (E < 0)

2_1 2
:/Df(c,Vc) <. f(c,Vc)z(CT)+%HVC||2

The C-H can also be written in conservative form as
Oc . of of
a_+dlv() 0, J_v<8c le(avc))

Firas DHAOUADI ProHyp 2024, Trento 25 /37



Hyperbolicization approach
A hyperbolic model for Cahn-Hilliard equations

Numerical scheme
Results

Proposed action

Let us introduce the following action

(¢ —1)°
a://Edet, L= —"
tJD

gl 2, A2 B
1 +2||V90||+2(c ©) 5 ¥t

@ ¢ is the new order parameter (distinguishes the phases).
° 3

(c — )? is a classical penalty term.
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Results

Proposed action

Let us introduce the following action

2_12
“//“th’ P ot N TN
+JD 2

) B o
- (c—g)P -

5 2%

@ ¢ is the new order parameter (distinguishes the phases).
° 3

(c — )? is a classical penalty term.

dc . oL oc 3
a—dw(V(&)), — a—A(c —c+A(c—y))
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Hyperbolicization approach
A hyperbolic model for Cahn-Hilliard equations Numerical scheme

Results

Proposed action

Let us introduce the following action

-1 2 A
a://Edet, Ezu—l-z\\VgOW-l-—(C—@F—é@?
. Ip 4 2 2 2

@ ( is the new order parameter (distinguishes the phases).
2(c — ¢)? is a classical penalty term.

dc . oL Oc 3
E—dlv(V(%>), = 5 =A(’—c+A(c—y))

0 (0L oL\ 0L 3% . B
5 (89015) + div (8Vgp> = — 6 —div (vV) = A(c — @)
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Hyperbolicization approach
A hyperbolic model for Cahn-Hilliard equations Numerical scheme
Results

Cattaneo-type relaxation for first equation

We start from

oc
E:div(v (> —c+A(c—)))

We apply classical relaxation (7 < 1 is a characteristic time)

dc , 1
E -+ div (;q) = 0,
oq 1

o TV (—ctAlc—p) =——q
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Hyperbolicization approach
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Results

Order reduction for second equation

We start from

B, —div (V) = Me — ¢)
We denote
_ g% _
w = 5 p = Vo.

Thus obtaining the system

ow ,

=~ div(yp) = ~A(p — 0

op 1

o0 _ 1

ot B
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A hyperbolic model for Cahn-Hilliard equations

Hyperbolicization approach
Numerical scheme
Results

First-order hyperbolic system for C-H equations

Regrouping all equations we get

¢ | aiv (L
ot v Tq

oq 3 1
S V(@ —ctAe—9) = ——q
ow ,
g—dw(vp)——A(so—C)

op 1 B

ot B

Firas DHAOUADI
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Hyperbolicization approach
A hyperbolic model for Cahn-Hilliard equations Numerical scheme
Results

Energy decay

One can obtain an decay law for the total energy given by

OE . (OEOE OEOJE dE||?
— +div — =— 1|l <0.
ot Oc 0q Ow Op dq
where the total energy F is
(2=1)* 4 A 1 1
E _\e-4 7 AV T T 2
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Hyperbolicization approach
A hyperbolic model for Cahn-Hilliard equations Numerical scheme
Results

Hyperbolicity

In three dimensions of space, the eigenvalues are given by

§1-5=0
V32 + )\ —1
6 =— N
V32 + )\ —1
&7 = 7
&s _ v
VB
6 = U
ik

for which a full basis of real eigenvectors exist.
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Implicit fourth order FD on staggered grids for the original
Cahn-Hilliard equations

%—le(XVC)—F’yAAC—O X =3c -1

We propose the following scheme

C’(L—!—l Cn i At (Fn+1 f'zn—i-l ) 4+ = At (gn—l-l gn+1 ) ’yAAhCn+1

1,7 ACE ’L—l—z,j Ay ,.7+2 aj__
1 n+1,r n+1
Frl = X" (Vee)V Ty
itg.0 ity ( )z+%,3’
where
n+1l,r _ i n+lyr  yn+lr n+lr  yn+lr
X1 = 19 (7Xz',j Xicj T T X X¢+2,j>
n+l _ n+1l n—+1 n+l  n+l
(VeO)ii 1™ " 1552 (15% 1 D€ T i G 2J)

(The same for G**1)
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AAhc?jl is a discretization of the bi-Laplacian operator in the
cell-centers as follows

At
n+1 n+1 n—l—l n—|—1 n—+1 n+1
AAhcm- =~ A4 (c Y —4c;” i+ 6c 4cz+1’j + CZ+2J)
. At Cn—i—l — 4e n—i—l + 6Cn—|—1 4cn—i—1 + Cn—i—l
Ayt 0,] =2 -1 i,J+1 0,42
2At (Cn—|—1 2 n+1 + Cn—l—l ' . 26n+1
A$2Ay 1,7—1 —1 1+1,7—1 -1,
n+1 n+1 n+1 n+1 n+1
+ 467;,]' —2¢4 + ¢ — 26+ C@'+1,j+1)
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Comparison of hyperbolic and original CH: ODE solution
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Figure 5: Comparison of a stationary solution of the hyperbolic model
with the original counterpart for different values of .
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Comparison of hyperbolic and original CH: 1D Ostwald
Ripening

t=0.0 t=0.3
1.0 1.0 1.0
0.5 0.5 0.5
T T B
% 0.0 TD 0.0 TQ 0.0
< < o
0.5 0.5 0.5
~1.0F —c clf  _j0f —ceclf 10
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00
X X X

Figure 6: Comparison of Ostwald Ripening solution of the hyperbolic
model with the original counterpart. Parameters are
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Preliminary results for 2D Ostwald Ripening

Results obtained using explicit one-step fourth order ADER-DG.
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@ Heat conduction can be modeled by hyperbolic equations.

@ Entropy equation can be derived as an Euler-Lagrange
equation.
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Conclusion and Perspectives

@ Heat conduction can be modeled by hyperbolic equations.

@ Entropy equation can be derived as an Euler-Lagrange
equation.

@ Cahn-Hilliard equations can as well.

Perspectives

@ Multi-D simulations for heat equation (accounting for
curl-involutions, etc)

@ Rigorous Justification of the relaxation limit

e Further optimization at the numerical level (semi-implicit
discretization, etc )

@ Preserving —1 < ¢ < 1 numerically
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Conclusion and Perspectives

Thank you for your attention |
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