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Diffusion equations

Many phenomena in nature are described by diffusion-type
equations

1 Fick’s second law for particle concentration

∂φ

∂t
= div (D∇φ)

2 Fourier’s law for heat conduction leads to

∂T

∂t
= div (K∇T )

3 etc ...

Very ”simple” structure, compares well with experimental
observations.
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Objective

We would like to provide first-order hyperbolic alternatives to the
following systems

1 Euler equations supplemented by Fourier heat conduction

∂ρ

∂t
+ div (ρu) = 0, (1a)

∂ρu

∂t
+ div (ρu⊗ u+ p(ρ, η)I) = 0, (1b)

∂E

∂t
+ div (Eu+ p(ρ, η)u−K∇θ(ρ, η)) = 0. (1c)

2 Cahn-Hilliard equations

∂c

∂t
= ∆

(
c3 − c− γ∆c

)
. (2)
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Why are we doing this?

1 Restore the principle of causality :

information must not travel faster than light speed in vacuum.
(Trivially violated by Laplace operator)

2 Symmetric hyperbolic equations are well-posed.

3 Obtain an alternative description of known phenomena.

4 Chance it provides much easier/faster numerical simulations.
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Plan of presentation

1 A hyperbolic model for heat conduction in compressible flows
Model Derivation
Hyperbolicity
Numerical results

2 A hyperbolic model for Cahn-Hilliard equations
Hyperbolicization approach
Numerical scheme
Results

3 Conclusion and Perspectives

Firas DHAOUADI ProHyp 2024, Trento 5 / 37



A hyperbolic model for heat conduction in compressible flows
A hyperbolic model for Cahn-Hilliard equations

Conclusion and Perspectives

Model Derivation
Hyperbolicity
Numerical results

Objective properties

We want to obtain a model that satisfies the following properties

1 First-order hyperbolic system

2 Can be cast into a Friedrichs symmetric form

3 Total Energy is conserved

4 Compatible with the second law of thermodynamics

5 Gallilean invariant

6 can be derived from a variational principle
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About Euler-Lagrange equations

Given a Lagrangian, you can derive the Euler-Lagrange equation

L(q, q̇,∇q) =⇒ d

dt

(
∂L
∂q̇

)
+ div

(
∂L
∂∇q

)
=

∂L
∂q

Things are already more complicated for Euler equations

L(ρ,u) =
∫

Ωt

(
1

2
ρ ||u||2 − ρε(ρ, η)

)
dΩ,

δρ = −div (ρδx) , δu =
∂δx

∂t
+

∂δx

∂x
u− ∂u

∂x
δx

After a bit of calculus ⇒ ∂ρu

∂t
+ div

(
ρu⊗ u+ ρ2

∂ε

∂ρ
I

)
= 0
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Euler equations for compressible fluids

∂ρ

∂t
+ div (ρu) = 0, (mass)

∂ρu

∂t
+ div (ρu⊗ u+ p(ρ, η)I) = 0, (momentum)

∂ρη

∂t
+ div (ρηu) = 0. (entropy)

Summing up these equations yields the energy conservation
equation

∂E

∂t
+ div (Eu+ p(ρ, η)u) = 0. (Energy)
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Thermal displacement (Green-Naghdi 1991)
In this paper :

[1] Green, A. E., & Naghdi, P. (1991). A re-examination of the basic postulates
of thermomechanics. Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, 432(1885), 171-194.

The authors introduce an independent auxiliary potential ϕ(x, t) as
a thermal analogue of the kinematic variables such that

ϕ̇(x, t) = −θ(x, t)

One can then write the Lagrangian

L(ρ,u, ϕ̇) =
∫

Ω

(
1

2
ρ ||u||2 − ρε⋆(ρ, ϕ̇)

)
dΩ,

where

ε(ρ, η) = ε⋆(ρ, ϕ̇)− ηϕ̇, with η =
∂ε⋆

∂ϕ̇
.
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Entropy as an Euler-Lagrange equation

Given the Lagrangian

L(ρ,u, ϕ̇) =
∫

Ω

(
1

2
ρ ||u||2 − ρε⋆(ρ, ϕ̇)

)
dΩ,

(
ϕ̇ =

∂ϕ

∂t
+ u · ∇ϕ

)

One obtains

∂ρu

∂t
+ div

(
ρu⊗ u+ ρ2

∂ε⋆

∂ρ
I

)
= 0, (Euler-Lagrange for δx)

∂

∂t
(ρ) + div (ρu) = 0, (Euler-Lagrange for δϕ)
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ρ
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+ div
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Entropy as an Euler-Lagrange equation
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(
ϕ̇ =

∂ϕ
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+ u · ∇ϕ

)

One obtains

∂ρu

∂t
+ div

(
ρu⊗ u+ ρ2

∂ε⋆

∂ρ
I

)
= 0, (Euler-Lagrange for δx)

∂

∂t
(ρη) + div (ρηu) = 0, (Euler-Lagrange for δϕ)

∂ρ

∂t
+ div (ρu) = 0 (Constraint)

A similar idea was also used in Lagrangian coordinates in
Peshkov et.al. (2018).
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Extension of Green-Naghdi’s philosophy

Consider the Lagrangian

L(ρ,u,∇ϕ, ϕ̇) =

∫

Ω

(
1

2
ρ ||u||2 − ρε⋆(ρ, ϕ̇)−1

2
α(ρ) ||∇ϕ||2

)
dΩ,

where the function α(ρ) is an arbitrary positive function of density.

∂ρ

∂t
+ div (ρu) = 0,

∂ρu

∂t
+ div (ρu⊗ u+ P (ρ,∇ϕ) I+ α(ρ) ∇ϕ⊗∇ϕ) = 0,

∂ρη

∂t
+ div (ρηu+ α(ρ)∇ϕ) = 0,

where P (ρ,∇ϕ) = ρ2
∂ε⋆

∂ρ
+

1

2
(ρα′(ρ)− α(ρ)) ||∇ϕ||2

Problem : PDE is of second order and depends on ∇ϕ.
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Solution: First-order reduction

Recall that
∂ϕ

∂t
+ u · ∇ϕ = −θ(ρ, η)

∂∇ϕ

∂t
+∇ (u · ∇ϕ+ θ(ρ, η)) = 0

Let us introduce j = ∇ϕ as an independent variable. Then j
satisfies

∂j

∂t
+∇ (u · j+ θ(ρ, η)) = 0
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Dissipationless system of equations

∂ρ

∂t
+ div (ρu) = 0,

∂ρu

∂t
+ div (ρu⊗ u+Π) = 0, Π = P (ρ, η, j) I+ α(ρ) j⊗ j

∂j

∂t
+∇ (j · u+ θ(ρ, η)) +

(
∂j

∂x
−
(
∂j

∂x

)T
)
u = 0,

∂ρη

∂t
+ div (ρηu+ α(ρ)j) = 0.

Total energy conservation is obtained as a consequence

∂E

∂t
+ div (Eu+Πu+q) = 0, q = α(ρ) θ(ρ, η) j

Additional term in the energy conservation is heat flux.
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Rayleigh dissipation function

∂ρ

∂t
+ div (ρu) = 0,

∂ρu

∂t
+ div (ρu⊗ u+ P (ρ, η, j) I+ α(ρ) j⊗ j) = 0,

∂j

∂t
+∇ (j · u+ θ(ρ, η)) +

(
∂j

∂x
−
(
∂j

∂x

)T
)
u = −∂R

∂j
,

∂ρη

∂t
+ div (ρηu+ α(ρ)j) =

α(ρ)

θ(ρ, η)

∂R
∂j

· j.

Here R is the Rayleigh dissipation function and which we take in
the simplest form as

R =
1

2τ
∥j∥2, ∂R

∂j
=

1

τ
j
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Energy convexity

Total energy is given by

E(ρ,m, s, j) =
1

2ρ
||m||2+ρε(ρ, s/ρ)+

1

2
α(ρ) ||j||2 , m = ρu, s = ρη

Sufficient criterion for energy convexity

if
∂2

∂ρ2

(
1

α(ρ)

)
≤ 0, for ρ > 0.

then E i s also a convex function of Q.

We choose a simple function fitting this criterion

α(ρ) =
κ
ρ
, κ = cst.

(Another possibility is α(ρ) = cst, taken in Peshkov et.al. (2018))
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Hyperbolicity

system can be cast into quasilinear form

∂V

∂t
+A(V)

∂V

∂x
= 0

where A admits 8 eigenvalues whose expressions are given by





χ1 = u1 −
√

Z1 + Z2,

χ2 = u1 −
√

Z1 − Z2,

χ3−6 = u1,

χ7 = u1 +
√

Z1 − Z2,

χ8 = u1 +
√

Z1 + Z2

where





Z1 =
1

2

(
a2p + a2T + a2j

)
,

Z2 =

√
a4pT +

1

4

(
a2p − a2T

)2
,

a2p =
∂p

∂ρ
, a2T =

κ2

ρ2
∂θ

∂η
,

a4pT =
κ2

ρ2
∂p

∂η

∂θ

∂ρ
, a2j =

2κ2

ρ2
(
j22 + j23

)
.
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1D-study: Eigenfields

In one dimension of space, we can write the system as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂ρ

∂ρ

∂x
+

1

ρ

∂p

∂η

∂η

∂x
= 0,

∂η

∂t
+ u

∂η

∂x
+

κ2

ρ2
∂j

∂x
− κ2

ρ3
j
∂ρ

∂x
= 0,

∂j

∂t
+ j

∂u

∂x
+ u

∂j

∂x
+

∂θ

∂ρ

∂ρ

∂x
+

∂θ

∂η

∂η

∂x
= 0.

The eigenvalues are given by



λ1 = u−√
Y1 + Y2,

λ2 = u−√
Y1 − Y2,

λ3 = u+
√
Y1 − Y2,

λ4 = u+
√
Y1 + Y2,

where





Y1 =
1
2

(
a2p + a2T

)
,

Y2 =
√

a4pT + Y 2
3 ,

Y3 =
1
2

(
a2p − a2T

)
.
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where





Y1 =
1
2

(
a2p + a2T

)
,

Y2 =
√

a4pT + Y 2
3 ,

Y3 =
1
2

(
a2p − a2T

)
.

Nature of the eigenfields (polytropic gas equation of state):

System admits full basis of eigenvectors.

Eigenfields associated to λ1,4 are genuinely non-linear.

Eigenfields associated to λ2,3 are neither genuinely non-linear,
neither linearly degenerate.
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Hugoniot Locus (polytropic gas equation of state)
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Study of the Hugoniot curves shows interesting possible solutions:

Expansion shocks,

Compression fans,

Compound shocks.
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Compound shocks

t

x

dx
dt

= D⋆

︷ ︸︸ ︷
compression fan

Figure 1: Schematic representation of the wave pattern in the x− t
plane, for a compound shock splitting solution. The shock propagates to
the right, followed by a right facing compression fan.
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Recovery of Fourier law: Shock tube problem
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Figure 2: Shock tube with heat conduction. The solution is given at final
time t = 0.2. Parameters: CFL = 0.9, γ = 5/3, cV = 3/2, K = 10−3.
Relaxation time is taken as τ = K

α(ρ0) θ(ρ0,η0)
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Expansion shock solution
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Figure 3: Numerical result for an expansion shock solution on the
computational domain [0, 1], discretized over N = 10000 cells displayed
at final time t = 0.5. Parameters: CFL = 0.9, γ = 2, cV = 1, κ = 0.8.
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Compound shock solution
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Figure 4: Compound shock plotted as a function of the self-similar
coordinate x̆ = (x−D⋆t)/t. CFL = 0.9, γ = 2, cV = 1, κ = 1.3.
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About Cahn-Hilliard equations

The Cahn-Hilliard equation is given by

∂c

∂t
= ∆

(
c3 − c− γ∆c

)
.

It admits the following Lyapunov functional

(
dF

dt
≤ 0

)

F =

∫

D
f(c,∇c) dΩ, f(c,∇c) =

(
c2 − 1

)2

4
+

γ

2
||∇c||2

The C-H can also be written in conservative form as

∂c

∂t
+ div (j) = 0, j = ∇

(
∂f

∂c
− div

(
∂f

∂∇c

))
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Proposed action

Let us introduce the following action

a =

∫

t

∫

D
L dΩ dt, L =

(
c2 − 1

)2

4
+
γ

2
||∇φ||2+ λ

2
(c−φ)2− β

2
φ2
t

φ is the new order parameter (distinguishes the phases).
λ
2 (c− φ)2 is a classical penalty term.

∂c

∂t
= div

(
∇
(
∂L
∂c

))
, =⇒ ∂c

∂t
= ∆

(
c3 − c+ λ (c− φ)

)
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t
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D
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4
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γ

2
||∇φ||2+ λ

2
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2
φ2
t

φ is the new order parameter (distinguishes the phases).
λ
2 (c− φ)2 is a classical penalty term.

∂c

∂t
= div

(
∇
(
∂L
∂c

))
, =⇒ ∂c

∂t
= ∆

(
c3 − c+ λ (c− φ)

)

∂

∂t

(
∂L
∂φt

)
+ div

(
∂L
∂∇φ

)
=

∂L
∂φ

=⇒ β
∂φt

∂t
− div (γ∇φ) = λ(c− φ)
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Cattaneo-type relaxation for first equation

We start from

∂c

∂t
= div

(
∇
(
c3 − c+ λ (c− φ)

))

We apply classical relaxation (τ ≪ 1 is a characteristic time)

∂c

∂t
+ div

(
1

τ
q

)
= 0,

∂q

∂t
+∇

(
c3 − c+ λ (c− φ)

)
= −1

τ
q,
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Order reduction for second equation

We start from

β
∂φt

∂t
− div (γ∇φ) = λ(c− φ)

We denote

w = β
∂φt

∂t
, p = ∇φ.

Thus obtaining the system

∂w

∂t
− div (γp) = −λ(φ− c)

∂p

∂t
− 1

β
∇w = 0

∂φ

∂t
=

1

β
w
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First-order hyperbolic system for C-H equations

Regrouping all equations we get

∂c

∂t
+ div

(
1

τ
q

)
= 0

∂q

∂t
+∇

(
c3 − c+ λ(c− φ)

)
= −1

τ
q

∂w

∂t
− div (γp) = −λ(φ− c)

∂p

∂t
− 1

β
∇w = 0

∂φ

∂t
=

1

β
w
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Energy decay

One can obtain an decay law for the total energy given by

∂E

∂t
+ div

(
∂E

∂c

∂E

∂q
− ∂E

∂w

∂E

∂p

)
= −

∣∣∣∣
∣∣∣∣
∂E

∂q

∣∣∣∣
∣∣∣∣
2

≤ 0.

where the total energy E is

E(c, φ,w,p,q) =

(
c2 − 1

)2

4
+
γ

2
||p||2+λ

2
(c−φ)2+

1

2β
w2+

1

2τ
||q||2
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Hyperbolicity

In three dimensions of space, the eigenvalues are given by

ξ1−5 = 0

ξ6 = −
√
3c2 + λ− 1√

τ

ξ7 =

√
3c2 + λ− 1√

τ

ξ8 = −
√
γ√
β

ξ9 =

√
γ√
β
,

for which a full basis of real eigenvectors exist.
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Implicit fourth order FD on staggered grids for the original
Cahn-Hilliard equations

∂c

∂t
− div (χ∇c) + γ∆∆c = 0, χ = 3c2 − 1

We propose the following scheme

cn+1
i,j =cni,j +

∆t

∆x

(
Fn+1
i+ 1

2
,j
−Fn+1

i− 1
2
,j

)
+

∆t

∆y

(
Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)
− γ∆∆hc

n+1
i,j

Fn+1
i+ 1

2
,j
= χn+1,r

i+ 1
2
,j

(∇xc)
n+1
i+ 1

2
,j
,

where



χn+1,r

i+ 1
2
,j
≃ 1

12

(
7χn+1,r

i,j − χn+1,r
i−1,j + 7χn+1,r

i+1,j − χn+1,r
i+2,j

)

(∇xc)
n+1
i+ 1

2
,j
≃ − 1

12 δx

(
15 cn+1

i−1,j − 15 cn+1
i,j + cn+1

i+1,j − cn+1
i−2,j

)

(The same for Gn+1)
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∆∆hc
n+1
i,j is a discretization of the bi-Laplacian operator in the

cell-centers as follows

∆∆hc
n+1
i,j =− ∆t

∆x4

(
cn+1
i−2,j − 4cn+1

i−1,j + 6cn+1
i,j − 4cn+1

i+1,j + cn+1
i+2,j

)

− ∆t

∆y4

(
cn+1
i,j−2 − 4cn+1

i,j−1 + 6cn+1
i,j − 4cn+1

i,j+1 + cn+1
i,j+2

)

− 2∆t

∆x2∆y2
(
cn+1
i−1,j−1 − 2cn+1

i,j−1 + cn+1
i+1,j−1 − 2cn+1

i−1,j

+ 4cn+1
i,j − 2cn+1

i+1,j + cn+1
i−1,j+1 − 2cn+1

i,j+1 + cn+1
i+1,j+1

)
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Comparison of hyperbolic and original CH: ODE solution
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Figure 5: Comparison of a stationary solution of the hyperbolic model
with the original counterpart for different values of λ.
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Comparison of hyperbolic and original CH: 1D Ostwald
Ripening
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Figure 6: Comparison of Ostwald Ripening solution of the hyperbolic
model with the original counterpart. Parameters are
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Preliminary results for 2D Ostwald Ripening

Results obtained using explicit one-step fourth order ADER-DG.
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Conclusion and Perspectives

Heat conduction can be modeled by hyperbolic equations.

Entropy equation can be derived as an Euler-Lagrange
equation.

Cahn-Hilliard equations can as well.

Perspectives

Multi-D simulations for heat equation (accounting for
curl-involutions, etc)

Rigorous Justification of the relaxation limit

Further optimization at the numerical level (semi-implicit
discretization, etc )

Preserving −1 ≤ c ≤ 1 numerically
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Thank you for your attention !

[1] Dhaouadi, Firas, and Sergey Gavrilyuk. ”An Eulerian hyperbolic model for
heat transfer derived via Hamilton’s principle: analytical and numerical study.”
Proceedings of the Royal Society A 480.2283 (2024): 20230440.

[2] Dhaouadi firas, Michael Dumbser and Sergey Gavrilyuk, ”A first-order
hyperbolic approximation to the Cahn-Hilliard equation”. To be submitted.
And references therein.

Acknowledgement: This project is supported and funded by NextGeneration
EU, Azione 247 MUR Young Researchers – MSCA/SoE.

Firas DHAOUADI ProHyp 2024, Trento 37 / 37


	A hyperbolic model for heat conduction in compressible flows
	Model Derivation
	Hyperbolicity
	Numerical results

	A hyperbolic model for Cahn-Hilliard equations
	Hyperbolicization approach
	Numerical scheme
	Results

	Conclusion and Perspectives

