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Abstract
We present a new model for heat transfer in compressible fluid flows. The model is derived from Hamilton’s principle of stationary action in Eulerian coordinates, in a
setting where the entropy conservation is recovered as an Euler–Lagrange equation. The governing system is shown to be hyperbolic. It is asymptotically consistent
with the Euler equations for compressible heat conducting fluids, provided the addition of suitable relaxation terms. A study of the Rankine–Hugoniot conditions and
the Clausius–Duhem inequality reveals that contact discontinuities cannot exist while expansion waves and compression fans are possible solutions to the governing
equations. Evidence of these properties is provided on a set of numerical test cases.

1. Entropy as an Euler-Lagrange eqn
The idea is to introduce a scalar field ϕ such that the
temperature is θ = ϕ̇. In this setting one writes the
Lagrangian

L =

∫
Ω

(
1
2
ρ ||u||2 −

κ2

2ρ
||∇ϕ||2 − ρε⋆(ρ, ϕ̇)

)
dΩ,

ε⋆ is the Legendre transform of internal energy and
η is the entropy

ε(ρ, η) = ε⋆(ρ, ϕ̇) − ηϕ̇, with η =
∂ε⋆

∂ϕ̇
.

The Euler-Lagrange equation for ϕ is then
∂

∂t
(ρη) + div (ρηu + α(ρ)∇ϕ) = 0.

2. Motion equations
One promotes the variable j = ∇ϕ. Then, the system
of equations is given by

∂ρ

∂t
+ div (ρu) = 0,

∂ρu
∂t
+ div (ρu ⊗ u + Π) = 0,

∂j
∂t
+ ∇ (j · u + θ) +

 ∂j
∂x
−

(
∂j
∂x

)T  u = −
∂R

∂j
,

∂ρη

∂t
+ div

(
ρηu +

κ2

ρ
j
)
=
κ2

ρθ

∂R

∂j
· j.

where Π =
(
ρ2 ∂ε

∂ρ
−
κ2

ρ
||j||2

)
I +
κ2

ρ
j ⊗ j

R =
1
2τ
∥j∥2 is the Rayleigh dissipation function.

The system admits an energy conservation law
∂E
∂t
+ div

(
Eu + Πu +

κ2θ

ρ
j
)
= 0

3. Quick overview of the model
The following properties are provable

1. Energy is convex in the conservative variables.

2. The system can be symmetrized and is proven
to be hyperbolic.

3. Fourier’s law of heat conduction can be recov-
ered in the relaxation limit τ→ 0.

In 1d, it admits the eigenvalues
λ1 = u −

√
Y1 + Y2,

λ2 = u −
√

Y1 − Y2,

λ3 = u +
√

Y1 − Y2,

λ4 = u +
√

Y1 + Y2,

where


Y1 =

1
2

(
a2

p + a2
T

)
,

Y2 =
√

a4
pT + Y2

3 ,

Y3 =
1
2

(
a2

p − a2
T

)
.

where a2
p =

∂p
∂ρ
, a2

T =
κ2

ρ2

∂θ

∂η
, a4

pT =
κ2

ρ2

∂p
∂η

∂θ

∂ρ

The system is also hyperbolic in multi-dimensions
if Godunov-Powell terms or curl-cleaning are also
supplied.

4. Clausius-Duhem inequality
One can write the Rankine-Hugoniot conditions for
our system

(M = ρ(u −D)) [M] = 0,[
p +
M2

ρ

]
= 0,[

M

(
M2

2ρ2 + ε +
p
ρ
+

1
2
κ2

ρ2 j2
)
+
κ2

ρ
θ j

]
= 0,[

M
j
ρ
+ θ

]
= 0,

Through shocks, the jumps are supplemented with[
ρ(u −D)η +

κ2

ρ
j
]
≥ 0,

as a necessary condition for shock admissibility :

Ψ(v) = η(v) − η0 −
κ2

M(v)2 (θ(v) − θ0) ≥ 0

if the subscript 0 is the state ahead of shock.

5. Existence of expansion shocks
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Figure 1: Plot of the function Ψ as a function of the
specific volume along the Hugoniot curve for the
thermal waves. Note that for κ < κc, ∃ region where
v > 1 and ψ ≥ 0⇒ existence of expansion shocks.

6. Some unorthodox numerical results
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Figure 2: Comparison with Euler-Fourier system
for two values of κ for a choc-tube problem.

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

ρ
[K
g
.m

−
3
]

x[m]

t = 0.5
t = 0

Figure 3: Expansion shock solution. Shock is
advancing towards regions of higher densities.
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Figure 4: Compressive rarefaction solution (Ve-
locity on the left is higher than on the right.)
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Figure 5: Shock-splitting solution. The velocity of
the shock coincides with the characteristic speed
behind of the shock.
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please refer to the related preprint.
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