A First-order Hyperbolic Reformulation of the Navier-Stokes-Korteweg Equations

Firas Dhaouadi Università degli Studi di Trento

Joint work with Sergey Gavrilyuk, Nicolas Favrie (Aix-Marseille University) Michael Dumbser (Università degli Studi di Trento)

March 9th, 2023

Navier-Stokes-Korteweg equations

In general, the equations write

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \underline{S} + \underline{K}\n\end{cases}
$$

where $\rho = \rho({\bf x},t)$, ${\bf u} = {\bf u}({\bf x},t)$ and $({\bf x},t) \in \mathbb{R}^d \times [0,T]$ The (viscous) Navier-Stokes contribution is given by

$$
\underline{\underline{S}} = \mu \operatorname{div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \operatorname{div}(\mathbf{u}) \mathbf{I} \right)
$$

The (dispersive) Korteweg contribution are given by:

$$
\underline{\underline{K}} = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

Dissipationless Euler-Korteweg equations

The equations write :

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)\n\end{cases}
$$

[where](#page-64-0) $\rho = \rho({\bf x},t)$, ${\bf u} = {\bf u}({\bf x},t)$ and $({\bf x},t) \in \mathbb{R}^d \times [0,T]$

Dissipationless Euler-Korteweg equations

The equations write :

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)\n\end{cases}
$$

[where](#page-64-0) $\rho = \rho({\bf x},t)$, ${\bf u} = {\bf u}({\bf x},t)$ and $({\bf x},t) \in \mathbb{R}^d \times [0,T]$

• $K(\rho) = \gamma$: Compressible flow with surface tension

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \gamma \rho \nabla(\Delta \rho)\n\end{cases}
$$

Dissipationless Euler-Korteweg equations

The equations write :

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)\n\end{cases}
$$

[where](#page-64-0) $\rho = \rho({\bf x},t)$, ${\bf u} = {\bf u}({\bf x},t)$ and $({\bf x},t) \in \mathbb{R}^d \times [0,T]$

• $K(\rho) = \gamma$: Compressible flow with surface tension $\int \rho_t + \text{div}(\rho \mathbf{u}) = 0$ $(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \gamma \rho \nabla(\Delta \rho)$

•
$$
K(\rho) = \frac{1}{4\rho}
$$
 : Quantum hydrodynamics
\n
$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \frac{1}{4\rho} \nabla \rho \otimes \nabla \rho) + \nabla \left(\frac{\rho^2}{2} - \frac{1}{4} \Delta \rho\right) = 0\n\end{cases}
$$

Dissipationless Euler-Korteweg equations

The equations write :

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)\n\end{cases}
$$

[where](#page-64-0) $\rho = \rho({\bf x},t)$, ${\bf u} = {\bf u}({\bf x},t)$ and $({\bf x},t) \in \mathbb{R}^d \times [0,T]$

• $K(\rho) = \gamma$: Compressible flow with surface tension $\int \rho_t + \text{div}(\rho \mathbf{u}) = 0$ $(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \gamma \rho \nabla(\Delta \rho)$

 $K(\rho)=\frac{1}{4\rho}$: Quantum hydrodynamics

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + \frac{1}{4\rho} \nabla \rho \otimes \nabla \rho) + \nabla (\frac{\rho^2}{2} - \frac{1}{4} \Delta \rho) = 0\n\end{cases}
$$

Surface tension / capillarity

- Euler-Korteweg equations : Fluid flow $+$ Surface tension.
- \bullet Surface tension $=$ Tendency of a fluid to shrink and minimize [its surface.](#page-20-0)
- [Examples in na](#page-70-0)ture : Droplet shape, ripples on the water surface, water striders, etc...

Photos credits : pexels.com

Main objective

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

$$
(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

$$
+ \mu \text{ div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \text{div}(\mathbf{u}) \mathbf{I} \right)
$$

Main objective

Given the Navier-Stokes-Korteweg system of equations :

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

$$
(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

$$
+ \mu \text{ div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \text{div}(\mathbf{u}) \mathbf{I} \right)
$$

✓ General model for viscous-dispersive fluid flows.

Main objective

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

$$
(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

$$
+ \mu \text{ div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \text{div}(\mathbf{u}) \mathbf{I} \right)
$$

- ✓ General model for viscous-dispersive fluid flows.
- $\sqrt{}$ A diffuse interface option for viscous two-phase flows.

Main objective

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

$$
(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

$$
+ \mu \text{ div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \text{div}(\mathbf{u}) \mathbf{I} \right)
$$

- ✓ General model for viscous-dispersive fluid flows.
- $\sqrt{}$ A diffuse interface option for viscous two-phase flows.
- ✗ contains high order derivatives (2nd and 3rd order).

Main objective

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

$$
(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

$$
+ \mu \text{ div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \text{div}(\mathbf{u}) \mathbf{I} \right)
$$

- ✓ General model for viscous-dispersive fluid flows.
- $\sqrt{}$ A diffuse interface option for viscous two-phase flows.
- ✗ contains high order derivatives (2nd and 3rd order).
	- \Rightarrow Crippling time-stepping.
	- \Rightarrow Has non-local operators.

Main objective

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

$$
(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

$$
+ \mu \text{ div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \text{div}(\mathbf{u}) \mathbf{I} \right)
$$

- ✓ General model for viscous-dispersive fluid flows.
- $\sqrt{}$ A diffuse interface option for viscous two-phase flows.
- ✗ contains high order derivatives (2nd and 3rd order).
	- \Rightarrow Crippling time-stepping.
	- \Rightarrow Has non-local operators.
- ✗ Often associated with non-convex equations of state.

Main objective

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

$$
(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

$$
+ \mu \text{ div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \text{div}(\mathbf{u}) \mathbf{I} \right)
$$

- ✓ General model for viscous-dispersive fluid flows.
- $\sqrt{}$ A diffuse interface option for viscous two-phase flows.
- ✗ contains high order derivatives (2nd and 3rd order).
	- \Rightarrow Crippling time-stepping.
	- \Rightarrow Has non-local operators.
- ✗ Often associated with non-convex equations of state.
	- \Rightarrow Loss of hyperbolicity in the left-hand side.

Main objective

Given the Navier-Stokes-Korteweg system of equations :

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

$$
(\rho \mathbf{u})_t + \text{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

$$
+ \mu \text{ div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \text{div}(\mathbf{u}) \mathbf{I} \right)
$$

- ✓ General model for viscous-dispersive fluid flows.
- $\sqrt{}$ A diffuse interface option for viscous two-phase flows.
- ✗ contains high order derivatives (2nd and 3rd order).
	- \Rightarrow Crippling time-stepping.
	- \Rightarrow Has non-local operators.
- ✗ Often associated with non-convex equations of state.
	- \Rightarrow Loss of hyperbolicity in the left-hand side.

Suggested solution

A first-order hyperbolic reformulation of the NSK system!

More generally

We are looking for a new model that:

- **•** approximates Euler-Korteweg in some limit.
- [is derived from](#page-20-0) a variational principle.
- [admits](#page-70-0) [no](#page-70-0) [regi](#page-70-0)ons of ellipticity.
- is in line with the laws of thermodynamics.
- **•** can be solved numerically with accurate numerical methods.

More generally

We are looking for a new model that:

- **•** approximates Euler-Korteweg in some limit.
- [is derived from](#page-20-0) a variational principle.
- [admits](#page-70-0) [no](#page-70-0) [regi](#page-70-0)ons of ellipticity.
- is in line with the laws of thermodynamics.
- **•** can be solved numerically with accurate numerical methods.

Hyperbolic equations

- Mathematically well-posed equations.
- A very rich literature on numerical methods.
- Bounded wave speeds

A subset of connected works and topics

- **1** A family of Parabolic relaxation of NSK equations.
	- \Rightarrow Rohde & collaborators [2014 Now]
	- \Rightarrow Chertock & Degond & Neusser [2017]
- 2 [Hyperbolic app](#page-20-0)roximation of Euler-Korteweg equations.
	- \Rightarrow [Dhaouadi,](#page-70-0) Favrie, Gavrilyuk 2019. (Schrödinger equation)
	- \Rightarrow Dhaouadi, Gavrilyuk, Vila 2022. (Thin films).
	- \Rightarrow Bourgeois, Lombard, Favrie 2020 (Solids with nonconvex EOS)
	- \Rightarrow Bresch *et al.*, 2020 (2nd Order Hyperbolic)
- **3** Hyperbolic reformulation of Navier-Stokes equations.
	- \Rightarrow GPR model of continuum mechanics. Godunov 1961, Romenski 1998,Peshkov et al. 2016]

A subset of connected works and topics

- **1** A family of Parabolic relaxation of NSK equations.
	- \Rightarrow Rohde & collaborators [2014 Now]
	- \Rightarrow Chertock & Degond & Neusser [2017]
- 2 [Hyperbolic app](#page-20-0)roximation of Euler-Korteweg equations.
	- \Rightarrow [Dhaouadi,](#page-70-0) Favrie, Gavrilyuk 2019. (Schrödinger equation)
	- \Rightarrow Dhaouadi, Gavrilyuk, Vila 2022. (Thin films).
	- \Rightarrow Bourgeois, Lombard, Favrie 2020 (Solids with nonconvex EOS)
	- \Rightarrow Bresch *et al.*, 2020 (2nd Order Hyperbolic)
- ³ Hyperbolic reformulation of Navier-Stokes equations.
	- \Rightarrow GPR model of continuum mechanics. [Godunov 1961, Romenski 1998,Peshkov et al. 2016]

Idea

Combine our augmented Lagrangian model with the general GPR model of continuum mechanics.

Outline

1 [Hyperbolic](#page-20-0)[refor](#page-20-0)mulation of the Euler-Korteweg system

2 Extension to the Navier-Stokes-Korteweg system

3 [A few words on Numerical m](#page-64-0)ethods and results

Lagrangian for the Euler-Korteweg system

(EK) system can be derived from the Lagrangian :

$$
\mathcal{L} = \int_{\Omega_t} \left(\frac{\rho |\mathbf{u}|^2}{2} - W(\rho) - \gamma \frac{|\nabla \rho|^2}{2} \right) d\Omega
$$

Variational principle $+$ Differential constraint : $\rho_t + \text{div}(\rho \textbf{u}) = 0$

$$
(\rho \mathbf{u})_t + \mathrm{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(p(\rho)) = \gamma \rho \nabla(\Delta \rho)
$$

with $p(\rho) = \rho W(\rho) - W(\rho)$

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Augmented Lagrangian approach

 $\overline{1}$

$$
\mathcal{L}(\mathbf{u}, \rho, \nabla \rho) = \int_{\Omega_t} \left(\frac{1}{2} \rho |\mathbf{u}|^2 - W(\rho) - \gamma \frac{|\nabla \rho|^2}{2} \right) d\Omega
$$

$$
\rho_t + \text{div}(\rho \mathbf{u}) = 0
$$

'Augmented' Lagrangian approach [Favrie-Gavrilyuk 2017]

$$
\tilde{\mathcal{L}}(\mathbf{u}, \rho, \eta, \nabla \eta) \qquad (\eta \longrightarrow \rho)
$$

$$
\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - \gamma \frac{|\nabla \eta|^2}{2} - \frac{1}{2\alpha \rho} (\rho - \eta)^2 \right) d\Omega
$$

$$
\frac{1}{2\alpha\rho} \left(\rho - \eta\right)^2
$$
: Classical Penalty term

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Hints on calculus of variations (For general $K(\rho)$)

$$
\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - K(\rho) \frac{|\nabla \eta|^2}{2} - \frac{\rho}{2\alpha} \left(\frac{\eta}{\rho} - 1 \right)^2 \right) d\Omega
$$

 $\mathcal{\tilde{L}}(\overline{\mathbf{u}}, \overline{\rho}, \overline{\eta}, \nabla \overline{\eta}$ δ [x](#page-20-0) $\delta \eta$ $) \Rightarrow$ Two Euler-Lagrange equations

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Hints on calculus of variations (For general $K(\rho)$)

$$
\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - K(\rho) \frac{|\nabla \eta|^2}{2} - \frac{\rho}{2\alpha} \left(\frac{\eta}{\rho} - 1 \right)^2 \right) d\Omega
$$

 $\mathcal{\tilde{L}}(\overline{\mathbf{u}}, \overline{\rho}, \overline{\eta}, \nabla \overline{\eta}$ δ [x](#page-20-0) $\delta \eta$ $) \Rightarrow$ Two Euler-Lagrange equations

• Virtual displacement of the continuum (δx) : $(\rho \mathbf{u})_t + \text{div} (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (\rho W'(\rho) - W(\rho))$ $=-\text{\rm div}\left(K(\rho)\nabla\eta\otimes\nabla\eta\right)-\nabla\left(\frac{1}{2}\right)$ 2 $(\rho K'(\rho) - K(\rho))|\nabla \eta|^2 +$ η α $\sqrt{ }$ 1 η ρ \bigwedge

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Hints on calculus of variations (For general $K(\rho)$)

$$
\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - K(\rho) \frac{|\nabla \eta|^2}{2} - \frac{\rho}{2\alpha} \left(\frac{\eta}{\rho} - 1 \right)^2 \right) d\Omega
$$

 $\mathcal{\tilde{L}}(\overline{\mathbf{u}}, \overline{\rho}, \overline{\eta}, \nabla \overline{\eta}$ δ [x](#page-20-0) $\delta \eta$ $) \Rightarrow$ Two Euler-Lagrange equations

• Virtual displacement of the continuum (δx) : $(\rho \mathbf{u})_t + \text{div} (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (\rho W'(\rho) - W(\rho))$ $=-\text{\rm div}\left(K(\rho)\nabla\eta\otimes\nabla\eta\right)-\nabla\left(\frac{1}{2}\right)$ 2 $(\rho K'(\rho) - K(\rho))|\nabla \eta|^2 +$ η α $\sqrt{ }$ 1 η ρ \bigwedge \bullet η variation $(\delta \eta)$:

$$
\frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) = - \left(K(\rho) \Delta \eta + K'(\rho) \nabla \rho \cdot \nabla \eta \right)
$$

Preliminary system

Deriving the system of governing equations yields:

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
-\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

where:

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\nabla\eta|^2 - \frac{\eta}{\alpha}\left(1-\frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma\nabla\eta\otimes\nabla\eta
$$

Preliminary system

Deriving the system of governing equations yields:

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
-\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

Replacing the relaxation term in the stress tensor yields

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\nabla\eta|^2 + \gamma\eta\Delta\eta\right)\mathbf{Id} - \gamma\nabla\eta\otimes\nabla\eta
$$

Preliminary system

Deriving the system of governing equations yields:

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
-\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

Replacing the relaxation term in the stress tensor yields

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\nabla\eta|^2 + \gamma\eta\Delta\eta\right)\mathbf{Id} - \gamma\nabla\eta\otimes\nabla\eta
$$

Reminder: Original Korteweg stress tensor

$$
\mathbf{K} = \left(\frac{\gamma}{2} |\nabla \rho|^2 + \gamma \rho \Delta \rho \right) \mathbf{Id} - \gamma \nabla \rho \otimes \nabla \rho
$$

Preliminary system

Deriving the system of governing equations yields:

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
-\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

Replacing the relaxation term in the stress tensor yields

$$
\mathbf{K}_{\alpha}=\left(\frac{\gamma}{2}|\nabla\eta|^2+\gamma\eta\Delta\eta\right)\mathbf{Id}-\gamma\nabla\eta\otimes\nabla\eta
$$

Reminder: Original Korteweg stress tensor

$$
\mathbf{K} = \left(\frac{\gamma}{2}|\nabla\rho|^2 + \gamma\rho\Delta\rho\right)\mathbf{Id} - \gamma\nabla\rho\otimes\nabla\rho
$$

$$
\operatorname{div}(\mathbf{K}) = \gamma \rho \nabla(\Delta \rho), \quad \operatorname{div}(\mathbf{K}_{\alpha}) = \gamma \eta \nabla(\Delta \eta)
$$

Preliminary system

This is the system we have

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
-\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

where:

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\nabla\eta|^2 - \frac{\eta}{\alpha}\left(1-\frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma\nabla\eta\otimes\nabla\eta
$$

Preliminary system

This is the system we have

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
-\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

where:

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\nabla\eta|^2 - \frac{\eta}{\alpha}\left(1-\frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma\nabla\eta\otimes\nabla\eta
$$

The obtained system :

✗ still contains high order derivatives.

Preliminary system

This is the system we have

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
-\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

where:

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\nabla\eta|^2 - \frac{\eta}{\alpha}\left(1-\frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma\nabla\eta\otimes\nabla\eta
$$

- ✗ still contains high order derivatives.
- X is not hyperbolic.

Preliminary system

This is the system we have

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
-\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

where:

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\nabla\eta|^2 - \frac{\eta}{\alpha}\left(1-\frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma\nabla\eta\otimes\nabla\eta
$$

- ✗ still contains high order derivatives.
- X is not hyperbolic.
- X has an elliptic constraint.

Preliminary system

This is the system we have

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
\boxed{(\ldots)_t + -\gamma \Delta \eta} = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

where:

$$
\mathbf{K}_{\alpha}=\left(\frac{\gamma}{2}|\nabla\eta|^2-\frac{\eta}{\alpha}\left(1-\frac{\eta}{\rho}\right)\right)\mathbf{Id}-\gamma\nabla\eta\otimes\nabla\eta
$$

- ✗ still contains high order derivatives.
- X is not hyperbolic.
- X has an elliptic constraint.

Preliminary system

This is the system we have

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(\rho W'(\rho) - W(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\
\boxed{(\ldots)_{t+1}} - \gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right)\n\end{cases}
$$

where:

$$
\mathbf{K}_{\alpha}=\left(\frac{\gamma}{2}|\nabla\eta|^2-\frac{\eta}{\alpha}\left(1-\frac{\eta}{\rho}\right)\right)\mathbf{Id}-\gamma\nabla\eta\otimes\nabla\eta
$$

- ✗ still contains high order derivatives.
- X is not hyperbolic.
- X has an elliptic constraint.
- **Idea :** Include $\dot{\eta}$ into the Lagrangian !

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

$$
\tilde{\mathcal{L}}(\mathbf{u}, \rho, \eta, \nabla \eta, \dot{\eta}) \qquad \alpha, \beta \ll 1
$$

$$
\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - \frac{\gamma}{2} |\nabla \eta|^2 - \frac{1}{2\alpha \rho} (\rho - \eta)^2 + \frac{\beta \rho}{2} \dot{\eta}^2 \right) d\Omega
$$
Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

$$
\tilde{\mathcal{L}}(\mathbf{u}, \rho, \eta, \nabla \eta, \dot{\eta}) \qquad \alpha, \beta \ll 1
$$

$$
\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - \frac{\gamma}{2} |\nabla \eta|^2 - \frac{1}{2\alpha \rho} (\rho - \eta)^2 + \frac{\beta \rho}{2} \dot{\eta}^2 \right) d\Omega
$$

$$
\textsf{Variational principle : } a = \int_{t_0}^{t_1} \tilde{\mathcal{L}} \ dt
$$

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} - \mathbf{K}_{\alpha}(\rho, \eta, \nabla \eta)) + \nabla P(\rho) = 0 \\
(\beta \rho \dot{\eta})_t + \operatorname{div}(\beta \rho \dot{\eta} \mathbf{u} - \gamma \nabla \eta) = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

$$
\tilde{\mathcal{L}}(\mathbf{u}, \rho, \eta, \nabla \eta, \dot{\eta}) \qquad \alpha, \beta \ll 1
$$

$$
\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - \frac{\gamma}{2} |\nabla \eta|^2 - \frac{1}{2\alpha \rho} (\rho - \eta)^2 + \frac{\beta \rho}{2} \dot{\eta}^2 \right) d\Omega
$$

$$
\textsf{Variational principle : } a = \int_{t_0}^{t_1} \tilde{\mathcal{L}} \ dt
$$

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} - \mathbf{K}_{\alpha}(\rho, \eta, \nabla \eta)) + \nabla P(\rho) = 0 \\
(\beta \rho \dot{\eta})_t + \operatorname{div}(\beta \rho \dot{\eta} \mathbf{u} - \gamma \nabla \eta) = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\n\end{cases}
$$

 \Rightarrow There are still high-order derivatives!

Hyperbolic reformulation of the Euler-Korteweg system Extension to the Navier-Stokes-Korteweg system

A few words on Numerical methods and results

Order reductions

• We denote
$$
w = \dot{\eta}
$$
. Thus:

$$
w = \eta_t + \mathbf{u} \cdot \nabla \eta \implies \left[(\rho \eta)_t + \text{div}(\rho \eta \mathbf{u}) = \rho w \right]
$$

Order reductions

• We denote
$$
w = \dot{\eta}
$$
. Thus:

$$
w = \eta_t + \mathbf{u} \cdot \nabla \eta \implies \left[(\rho \eta)_t + \text{div}(\rho \eta \mathbf{u}) = \rho w \right]
$$

• We denote
$$
\mathbf{p} = \nabla \eta
$$
. Again take :

$$
w = \eta_t + \mathbf{u} \cdot \nabla \eta
$$

Order reductions

• We denote
$$
w = \dot{\eta}
$$
. Thus:

$$
w = \eta_t + \mathbf{u} \cdot \nabla \eta \implies \left[(\rho \eta)_t + \text{div}(\rho \eta \mathbf{u}) \right] = \rho w
$$

\n- We denote
$$
\mathbf{p} = \nabla \eta
$$
. Again take : $\nabla w = \nabla (\eta_t + \mathbf{u} \cdot \nabla \eta)$
\n

$$
\implies \qquad \left| \mathbf{p}_t + \nabla (\mathbf{p} \cdot \mathbf{u} - w) = 0 \right|
$$

Order reductions

• We denote
$$
w = \dot{\eta}
$$
. Thus:

$$
w = \eta_t + \mathbf{u} \cdot \nabla \eta \implies \left[(\rho \eta)_t + \text{div}(\rho \eta \mathbf{u}) = \rho w \right]
$$

\n- We denote
$$
\mathbf{p} = \nabla \eta
$$
. Again take : $\nabla w = \nabla (\eta_t + \mathbf{u} \cdot \nabla \eta)$
\n

$$
\implies \qquad \left| \mathbf{p}_t + \nabla (\mathbf{p} \cdot \mathbf{u} - w) \right| = 0
$$

Important !

Initial data must be such that:

$$
\mathbf{p}(\mathbf{x},0) = \nabla \eta(\mathbf{x},0), \quad w(\mathbf{x},0) = \dot{\eta}(\mathbf{x},0)
$$

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Final form of the hyperbolic Euler-Korteweg system

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + (\rho W'(\rho) - W(\rho)) \mathbf{Id} - \mathbf{K}_{\alpha}) = 0 \\
(\beta \rho w)_t + \operatorname{div}(\beta \rho w \mathbf{u} - \gamma \mathbf{p}) = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \\
\mathbf{p}_t + \operatorname{div}((\mathbf{p} \cdot \mathbf{u} - w) \mathbf{Id}) = 0, \quad \operatorname{curl}(\mathbf{p}) = 0 \\
(\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w\n\end{cases}
$$

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\mathbf{p}|^{2} - \frac{\eta}{\alpha}\left(1 - \frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma \mathbf{p} \otimes \mathbf{p}
$$

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Final form of the hyperbolic Euler-Korteweg system

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + (\rho W'(\rho) - W(\rho)) \mathbf{Id} - \mathbf{K}_{\alpha}) = 0 \\
(\beta \rho w)_t + \operatorname{div}(\beta \rho w \mathbf{u} - \gamma \mathbf{p}) = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \\
\mathbf{p}_t + \operatorname{div}((\mathbf{p} \cdot \mathbf{u} - w) \mathbf{Id}) = 0, \quad \operatorname{curl}(\mathbf{p}) = 0 \\
(\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w\n\end{cases}
$$

$$
\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\mathbf{p}|^{2} - \frac{\eta}{\alpha}\left(1 - \frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma \mathbf{p} \otimes \mathbf{p}
$$

• Main question : Is this system hyperbolic ?

Hyperbolicity in 1D

 ${\bf 1D}$ case: ${\bf u}=(u,0,0)^T$ and ${\bf p}=(p,0,0)^T$: We can write the system in its quasi-linear form

$$
\mathbf{Q}_t + \mathbf{A}(\mathbf{Q})\mathbf{Q}_x = \mathbf{S}(\mathbf{Q})
$$

where Q [is](#page-70-0) [the](#page-70-0) [vec](#page-70-0)tor of primitive variables, $\mathbf{A} = \mathbf{A}(\mathbf{Q})$ is the jacobian matrix of the flux, and $S = S(Q)$ is the vector of source terms, all of which are given by

$$
\mathbf{A} = \begin{pmatrix} u & \rho & 0 & 0 & 0 \\ a_{21} & u & 0 & \frac{\gamma p}{\rho} & a_{25} \\ 0 & 0 & u & -\frac{\gamma}{\beta \rho} & 0 \\ 0 & p & -1 & u & 0 \\ 0 & 0 & 0 & 0 & u \end{pmatrix}, \ \mathbf{Q} = \begin{pmatrix} \rho \\ u \\ w \\ p \\ \eta \end{pmatrix}, \ \mathbf{S} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\alpha \beta \rho} \left(1 - \frac{\eta}{\rho}\right) \\ 0 \\ w \end{pmatrix}
$$

with $a_{21} = \rho^2 P'(\rho) + \frac{\eta^2}{\alpha \rho^2}$ $\frac{\eta^2}{\alpha \rho^3}$ and $a_{25}=\frac{1}{\alpha}$ α $\left(1-\frac{2\eta}{\rho}\right)$ ρ \setminus

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$)

$$
\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)} \\ a = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}} p^2 \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}
$$

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$)

$$
\xi = \begin{pmatrix} u & \psi_1 = \frac{1}{2}(a^2 + a^2 + a^2 + a^2 + a^2) \\ u + \sqrt{\psi_1 + \psi_2} & \psi_2 = \frac{1}{2}\sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)}^2 + 4a^2\sqrt{a^2 + a^2 - a^2} \\ u - \sqrt{\psi_1 + \psi_2} & \psi_2 = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}} p^2 \\ u - \sqrt{\psi_1 - \psi_2} & a_\alpha = \frac{\eta}{\rho\sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta\rho}} \end{pmatrix}
$$

 $a^2\!\!$: adiabatic sound speed.

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$)

$$
\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)} \\ a = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}} p^2 \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}
$$

- $a^2\!\!$: adiabatic sound speed.
- a_{γ} : wave speed due to capillarity.

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$)

$$
\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)} \\ a = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}} p^2 \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}
$$

 $a^2\!\!$: adiabatic sound speed. a_{γ} : wave speed due to capillarity. a_{α} and a_{β} : First and second relaxation speeds.

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$)

$$
\xi = \begin{pmatrix} u & \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ u + \sqrt{\psi_1 + \psi_2} & \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)} + 4a^2 \sqrt{a^2 + a^2 - a^2} \\ u - \sqrt{\psi_1 + \psi_2} & \psi_1 = \sqrt{\psi_2} \end{pmatrix}
$$
 with
$$
\begin{cases} \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 + a^2)} \\ a = \sqrt{P'(\rho)}, \quad a_{\gamma} = \sqrt{\frac{\gamma}{\rho}} \\ a_{\alpha} = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_{\beta} = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}
$$

 $a^2\!\!$ adiabatic sound speed. (negative in non-convex regions!!) a_{γ} : wave speed due to capillarity. a_{α} and a_{β} : First and second relaxation speeds.

Van der Waals equation of state

In the context of two-phase flows, the equation of state is non-convex

$$
p = \frac{\rho RT}{1 - b\rho} - a\rho^2
$$
, $a > 0, b > 0$

Figure 1: Van der Waals pressure for $T = 0.85, a = 3, b = 1/3, R = 8/3$

Hyperbolicity in 1-D: proof

A admits 5 eigenvalues that can be expressed as follows :

$$
\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)} \\ a = \sqrt{\rho W''(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}} p^2 \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}
$$

1 If $W''(\rho) > 0$, then $\psi_1 > 0$ and $\psi_2 \geq 0$

Hyperbolicity in 1-D: proof

A admits 5 eigenvalues that can be expressed as follows :

$$
\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)} \\ a = \sqrt{\rho W''(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}} p^2 \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}
$$

\n- **1** If
$$
W''(\rho) > 0
$$
, then $\psi_1 > 0$ and $\psi_2 \ge 0$
\n- **2** $\psi_2 = \sqrt{\psi_1^2 - a_\beta^2(a^2 + a_\alpha^2)} < \psi_1 \implies \psi_1 - \psi_2 > 0$
\n

Hyperbolicity in 1-D: proof

A admits 5 eigenvalues that can be expressed as follows :

$$
\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)} \\ a = \sqrt{\rho W''(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}} p^2 \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}
$$

1 If $W''(\rho) > 0$, then $\psi_1 > 0$ and $\psi_2 > 0$ $\psi_2=\sqrt{\psi_1^2}$ $^{2}_{1}-a^{2}_{\beta}$ $\frac{2}{\beta}(a^2 + a_\alpha^2) < \psi_1 \Rightarrow \psi_1 - \psi_2 > 0$ \bullet If $\rho^2 P'(\rho) < 0$, one can take α such that $a^2 + a^2_{\alpha}$ $\frac{2}{\alpha}>0.$

Hyperbolicity in 1-D: proof

A admits 5 eigenvalues that can be expressed as follows :

$$
\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a^2 + a^2 + a^2 + a^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a^2 + a^2 + a^2 - a^2)} \\ a = \sqrt{\rho W''(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}} p^2 \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}
$$

1 If $W''(\rho) > 0$, then $\psi_1 > 0$ and $\psi_2 > 0$ $\psi_2=\sqrt{\psi_1^2}$ $^{2}_{1}-a^{2}_{\beta}$ $\frac{2}{\beta}(a^2 + a_\alpha^2) < \psi_1 \Rightarrow \psi_1 - \psi_2 > 0$ \bullet If $\rho^2 P'(\rho) < 0$, one can take α such that $a^2 + a^2_{\alpha}$ $\frac{2}{\alpha}>0.$ \Rightarrow Eigenvalues are always real for a reasonable choice of α .

Proof of hyperbolicity in 1D

Since $\psi_1 > 0$ and $\psi_2 > 0$, the eigenvalues are ordered as follows:

$$
u - \sqrt{\psi_1 + \psi_2} \le u - \sqrt{\psi_1 - \psi_2} < u < u + \sqrt{\psi_1 - \psi_2} \le u + \sqrt{\psi_1 + \psi_2}
$$

- [Multiple eigenv](#page-70-0)alues for $\psi_2 = 0$.
- We can show that in this case, we still have a full basis of right eigenvectors:

$$
\xi = \left(\begin{array}{c} u \\ u + \sqrt{\psi_1} \\ u + \sqrt{\psi_1} \\ u - \sqrt{\psi_1} \\ u - \sqrt{\psi_1} \end{array}\right), \quad \Lambda = \left(\begin{array}{cccc} -\frac{\rho - 2\eta}{\alpha a_\beta^2} & 0 & \frac{\rho}{a_\beta} & 0 & -\frac{\rho}{a_\beta} \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -a_\beta & 0 & a_\beta & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{array}\right).
$$

This concludes the proof (works for general $K(\rho)$ [Dhaouadi 2020])

Some numerical results for hyperbolic EK equations

Preliminary test: The nonlinear Schrödinger equation

$$
K(\rho) = \frac{1}{4\rho}, \quad W(\rho) = \rho^2/2
$$

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}\left(\rho \mathbf{u} \otimes \mathbf{u} + \left(\frac{\rho^2}{2} - \frac{1}{4}\Delta \rho\right) \mathbf{Id} + \frac{1}{4\rho} \nabla \rho \otimes \nabla \rho\right) = 0\n\end{cases}
$$

Some numerical results for hyperbolic EK equations

Preliminary test: The nonlinear Schrödinger equation

$$
K(\rho) = \frac{1}{4\rho}, \quad W(\rho) = \rho^2/2
$$

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}\left(\rho \mathbf{u} \otimes \mathbf{u} + \left(\frac{\rho^2}{2} - \frac{1}{4}\Delta \rho\right) \mathbf{Id} + \frac{1}{4\rho} \nabla \rho \otimes \nabla \rho\right) = 0\n\end{cases}
$$

corresponds to

$$
i\psi_t + \frac{1}{2}\Delta\psi - |\psi|^2 \psi = 0
$$

Some numerical results for hyperbolic EK equations

Preliminary test: The nonlinear Schrödinger equation

$$
K(\rho) = \frac{1}{4\rho}, \quad W(\rho) = \rho^2/2
$$

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}\left(\rho \mathbf{u} \otimes \mathbf{u} + \left(\frac{\rho^2}{2} - \frac{1}{4}\Delta \rho\right) \mathbf{Id} + \frac{1}{4\rho} \nabla \rho \otimes \nabla \rho\right) = 0\n\end{cases}
$$

corresponds to

$$
i\psi_t + \frac{1}{2}\Delta\psi - |\psi|^2 \psi = 0
$$

with

$$
\psi(\mathbf{x},t) = \sqrt{\rho(\mathbf{x},t)}e^{i\theta(\mathbf{x},t)} \qquad \qquad \mathbf{u} = \nabla\theta
$$

Shock waves for Euler equations

Riemann problem in dispersionless hydrodynamics governed by Euler Equations :

Rarefaction-Shock solution to a Riemann problem for Euler Equations.

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

Dispersive Shock waves

Asymptotic profile of the solution to NLS equation (continuous line) for the Riemann problem $\rho_L = 2$, $\rho_R = 1$, $u_L = u_R = 0$. Oscillations shown at $t=70$

Extension to the Navier-Stokes-Korteweg system A few words on Numerical methods and results

DSW Numerical results

Comparison of the numerical result (ρ) with the Whitham modulational profile of the DSW at $t=70.$ $\beta = 2.10^{-5},$ $\alpha = 10^{-3},$ $N = 100000.$ The computational domain is [−500, 500]

So far

- [We proposed a](#page-20-0) first-order hyperbolic reformulation for the [dispersive part](#page-70-0) of the equations.
- This reformulation remains hyperbolic even in non-convex regions of the free energy.
- No dissipation taken into account.

So far

- [We proposed a](#page-20-0) first-order hyperbolic reformulation for the [dispersive part](#page-70-0) of the equations.
- This reformulation remains hyperbolic even in non-convex regions of the free energy.
- No dissipation taken into account.
- \Rightarrow Let us extend this model to the Navier-Stokes-Korteweg system.

Navier-Stokes-Korteweg equations

In general, the equations write

$$
\begin{cases}\n\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\
(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p(\rho) = \underline{S} + \underline{K}\n\end{cases}
$$

where $\rho = \rho({\bf x},t)$, ${\bf u} = {\bf u}({\bf x},t)$ and $({\bf x},t) \in \mathbb{R}^d \times [0,T]$ The (dispersive) Korteweg stress tensor is given by:

$$
\underline{\underline{K}} = \rho \nabla \left(\gamma \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)
$$

and the (viscous) Navier-Stokes stresses are given by

$$
\underline{\underline{S}} = \mu \operatorname{div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \operatorname{div}(\mathbf{u}) \mathbf{I} \right)
$$

Godunov-Peshkov-Romenski Model of continuum mechanics

Deformation gradient:

$$
\mathbf{F} = \left[\frac{\partial x_i}{\partial X_j}\right]
$$

Inverse Deformation gradient:

 $\int \partial X_i$

 ∂x_j

1

 $\mathbf{A}=\mathbf{F}^{-1}=$

$$
\begin{pmatrix}\nX \\
\downarrow \\
\Omega_0\n\end{pmatrix}\n\begin{pmatrix}\n\phi(X,t) \\
\downarrow \\
\Omega_t\n\end{pmatrix}\n\begin{pmatrix}\nX(X,t) \\
\downarrow \\
\Omega_t\n\end{pmatrix}
$$

$$
\partial_t(\mathbf{A}) + \nabla(\mathbf{A}\mathbf{u}) + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}} - \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}}\right)^T\right) \cdot \mathbf{u} = 0
$$
 (Solids)

Godunov-Peshkov-Romenski Model of continuum mechanics

Deformation gradient:

$$
\mathbf{F} = \left[\frac{\partial x_i}{\partial X_j}\right]
$$

Inverse Deformation gradient:

 $\int \partial X_i$

 ∂x_j

1

 $\mathbf{A}=\mathbf{F}^{-1}=$

$$
\left(\begin{array}{c}\nX \\
\downarrow \\
\downarrow \\
\Omega_0\n\end{array}\right)\n\begin{array}{c}\n\varphi(X,t) \\
\downarrow \\
\Omega_t\n\end{array}\n\left(\begin{array}{c}\nX(X,t) \\
\downarrow \\
\Omega_t\n\end{array}\right)
$$

$$
\partial_t(\mathbf{A}) + \nabla(\mathbf{A}\mathbf{u}) + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}} - \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}}\right)^T\right) \cdot \mathbf{u} = 0 \quad \text{(Solids)}
$$

$$
\partial_t(\mathbf{A}) + \nabla(\mathbf{A}\mathbf{u}) + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}} - \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}}\right)^T\right) \cdot \mathbf{u} = \frac{1}{\tau} \mathbf{S}(\mathbf{A}) \quad \text{(Fluids)}
$$

Hyperbolic $NSK =$ Hyperbolic $EK +$ Hyperbolic NS

(Black: Euler part, Red: Dispersive part, Blue: Viscous part.) $\partial_t(\rho)+\operatorname{div}(\rho\mathbf{u})=0$ $\partial_t(\rho \mathbf{u}) + \mathrm{div} \left(\rho \mathbf{u} \otimes \mathbf{u} + (\rho W'(\rho) - W(\rho)) \mathbf{Id} - K_\alpha - \sigma \right) = 0$ $\partial_t(\rho\eta) + \text{div}(\rho\eta \mathbf{u}) = \rho w$ $\partial_t (\rho w) + \text{div} \left(\rho w \mathbf{u} - \right)$ γ β p \setminus = $\frac{1}{\alpha\beta}\bigg(1\, \eta$ ρ \setminus $\partial_t (\mathbf{p}) + \nabla \left(\mathbf{p} \cdot \mathbf{u} - w \right) + \Bigg(\frac{\partial \mathbf{p}}{\partial \mathbf{x}} \Bigg)$ $\overline{\partial \mathbf{x}}$ – \int ∂p $\partial\mathbf{x}$ \setminus^T $\cdot \mathbf{u} = 0,$ $\partial_t (\mathbf{A}) + \nabla(\mathbf{A} \mathbf{u}) + \Bigg(\frac{\partial \mathbf{A}}{\partial \mathbf{x}}$ $\overline{\partial \mathbf{x}}$ – $\int \partial \mathbf{A}$ $\partial {\bf x}$ \setminus^T \cdot u = $-$ 3 τ $\text{det}(\mathbf{A})^{5/3}\mathbf{A}\text{dev}(\mathbf{G})$ where $\int \sigma = -\rho c_s^2 \mathbf{G} \text{dev}(\mathbf{G})$ where $\mathbf{G} = \mathbf{A}^T \mathbf{A}$ $\mathbf{K}_{\alpha}=-\gamma\mathbf{p}\otimes\mathbf{p}+\left(\frac{\gamma}{2}\right)$ $\frac{\gamma}{2}|\mathbf{p}|^2-\frac{\eta}{\alpha}$ α $\left(1-\frac{\eta}{\rho}\right)$ $\left(\frac{\eta}{\rho}\right)\Big) \mathbf{Id}$ [Firas DHAOUADI](#page-0-0) Marseille 2023, CIRM, GdT Hyperbo 27 / 40

GLM curl cleaning [Munz et al., 2000]

Black: Euler, Red: Dispersive, Blue: Viscous, Green: Curl Cleaning

$$
\partial_t(\rho) + \text{div}(\rho \mathbf{u}) = 0
$$

\n
$$
\partial_t(\rho \mathbf{u}) + \text{div}(\rho \mathbf{u} \otimes \mathbf{u} + (\rho W'(\rho) - W(\rho))\mathbf{Id} - K_\alpha - \sigma) = 0
$$

\n
$$
\partial_t(\rho \eta) + \text{div}(\rho \eta \mathbf{u}) = \rho w
$$

\n
$$
\partial_t(\rho w) + \text{div}(\rho w \mathbf{u} - \frac{\gamma}{\beta} \mathbf{p}) = \frac{1}{\alpha \beta} \left(1 - \frac{\eta}{\rho}\right)
$$

\n
$$
\mathbf{p}_t - \nabla w + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^T \mathbf{p} + \left(\frac{\partial \mathbf{p}}{\partial \mathbf{x}}\right) \mathbf{u} + 2a_c \nabla \times \psi = 0
$$

\n
$$
\psi_t + \left(\frac{\partial \psi}{\partial \mathbf{x}}\right)^T \mathbf{u} - a_c \sqrt{\frac{\gamma}{\rho}} \nabla \times \mathbf{p} = 0
$$

\n
$$
\partial_t(\mathbf{A}) + \nabla(\mathbf{A} \mathbf{u}) + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}} - \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}}\right)^T\right) \cdot \mathbf{u} = -\frac{3}{\tau} \det(\mathbf{A})^{5/3} \mathbf{A} \det(\mathbf{G})
$$

 $\psi=(\psi_1,\psi_2,\psi_3)^T$: Curl cleaning field.

Eigenvalues - Hyperbolicity

 \Rightarrow 21 Eigenvalues (Linearized around $A = \mathbf{I}, \mathbf{p} = (p1, 0, 0)^T)$

Transport:
$$
\lambda_{1-9} = u_1
$$
,

\nshear waves:
$$
\begin{cases} \lambda_{10-11} = u_1 + c_s, \\ \lambda_{12-13} = u_1 - c_s, \end{cases}
$$

\nCleaning waves:
$$
\begin{cases} \lambda_{14-15} = u_1 - \sqrt{\gamma/\rho} \ a_c, \\ \lambda_{16-17} = u_1 + \sqrt{\gamma/\rho} \ a_c, \end{cases}
$$

Mixed waves:

$$
\begin{cases}\n\lambda_{18} = u_1 - \sqrt{Z_1 + Z_2} \\
\lambda_{19} = u_1 - \sqrt{Z_1 - Z_2} \\
\lambda_{20} = u_1 + \sqrt{Z_1 + Z_2} \\
\lambda_{21} = u_1 + \sqrt{Z_1 - Z_2}\n\end{cases}, \n\begin{cases}\nZ_1 = \frac{1}{2} (a_0^2 + a_s^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2), \\
Z_2 = \sqrt{Z_1^2 - a_\beta^2 (a_0^2 + a_\alpha^2 + a_s^2)}, \\
a_0 = \sqrt{\rho W''(\rho)}, \quad a_s = \sqrt{\frac{4}{3} c_s^2} \\
a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho} p_1^2}\n\end{cases}
$$

Brief summary of the numerical method

We are interested in general hyperbolic equations of the form

$$
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) + \mathbf{B}(\mathbf{U}) \cdot \nabla \mathbf{U} = \mathbf{S}(\mathbf{U}).
$$

Brief summary of the numerical method

We are interested in general hyperbolic equations of the form

$$
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) + \mathbf{B}(\mathbf{U}) \cdot \nabla \mathbf{U} = \mathbf{S}(\mathbf{U}).
$$

[We](#page-70-0) [use](#page-70-0) [a](#page-70-0) [one-](#page-70-0)step fully explicit ADER-DG scheme, based on a weak formulation of the PDE in space-time

$$
\iint_{t^n\Omega_i}^{t^{n+1}} \varphi_k\left(\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) + \mathbf{B}(\mathbf{U}) \cdot \nabla \mathbf{U}\right) d\Omega dt = \iint_{t^n\Omega_i}^{t^{n+1}} \varphi_k\left(\mathbf{S}(\mathbf{U})\right) d\Omega dt.
$$
Brief summary of the numerical method

We are interested in general hyperbolic equations of the form

$$
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) + \mathbf{B}(\mathbf{U}) \cdot \nabla \mathbf{U} = \mathbf{S}(\mathbf{U}).
$$

[We](#page-70-0) [use](#page-70-0) [a](#page-70-0) [one-](#page-70-0)step fully explicit ADER-DG scheme, based on a weak formulation of the PDE in space-time

$$
\iint_{t^n \Omega_i}^{t^{n+1}} \varphi_k \left(\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) + \mathbf{B}(\mathbf{U}) \cdot \nabla \mathbf{U} \right) d\Omega dt = \iint_{t^n \Omega_i}^{t^{n+1}} \varphi_k (\mathbf{S}(\mathbf{U})) d\Omega dt.
$$

- A posteriori Weno limiting (MOOD approach) is considered.
- We use the Rusanov solver for the conservative fluxes.
- Path-conservative method for non-conservative terms.
- Mesh: Uniform cartesian Grid.

1D Traveling wave solutions for original NSK

1D NSK system reduces to:

$$
\partial_t(\rho) + \partial_x(\rho u) = 0
$$

$$
\partial_t(\rho u) + \partial_x(\rho u^2 + p(\rho)) = \frac{4}{3}\mu u_{xx} + \gamma \rho \rho_{xxx}
$$

Traveling wave assumption: $\rho(x,t) = \rho(x-st)$, $u(x,t) = u(x-st)$

$$
\begin{cases}\n\rho''' = \frac{1}{\lambda \rho} \left(\left(p'(\rho) - (u - s)^2 \right) \rho' - \frac{4}{3} \mu (u - s) \left(2 \frac{\rho'^2}{\rho^2} - \frac{\rho''}{\rho} \right) \right) \\
u' = (s - u) \frac{\rho'}{\rho}\n\end{cases}
$$

which we solve as a Cauchy problem with a prescribed initial condition $\rho_0=1.8$, ρ_0^{\prime} $\beta_0' = -10^{-10}, \ \rho_0''$ $y_0''=0, u_0=0$

Traveling wave solutions

Figure 2: Nature of travelling wave solutions at fixed dispersion $(\gamma = 0.001)$, for the original NSK equations.

See [Affouf & Caflisch 1991] for a discussion on the nature of the solutions for a simplified system.

Viscous TW solution

Viscous shock traveling wave solution to the original NSK (Obtained with a P_4P_4 ADER-DG scheme $+$ WENO3 subcell limiting on a grid with 512 cells with $\gamma = 0.001$, $\mu = 0.2$, $\alpha = 0.001$, $\beta = 0.00001$)

Oscillatory TW solution

Dispersive traveling wave solution to the original NSK (Obtained with a P_4P_4 ADER-DG scheme $+$ WENO3 subcell limiting on a grid with 512 cells with $\gamma = 0.001$, $\mu = 0.0075$, $\alpha = 0.001$, $\beta = 0.00001$)

Oscillatory TW solution

Superimposed numerical solution and exact solution of original model at t=4. (Obtained with a P_4P_4 ADER-DG scheme $+$ WENO3 subcell limiting on a grid with 512 cells with $\gamma = 0.001$, $\mu = 0.0075$, $c_s = 10$, $\alpha = 0.001, \ \beta = 0.00001$

2D Ostwald Ripening

20 Bubbles result (Obtained with a P_3P_3 ADER-DG scheme + Periodic boundary conditions $+$ WENO3 subcell limiting on a 288×288 grid with $\gamma = 0.0002$, $\mu = 0.01$, $c_s = 10$, $\alpha = 0.001$, $\beta = 0.00001$)

Curl errors

Comparison of the time evolution of the curl errors for two simulations with cleaning (blue line) and without cleaning (orange line).

Conclusion and Perspectives

Conclusion

- We presented a hyperbolic relaxation to the Navier-Stokes-Korteweg equations.
- [Numerical resu](#page-64-0)lts showed promise.

Conclusion and Perspectives

Conclusion

- We presented a hyperbolic relaxation to the Navier-Stokes-Korteweg equations.
- [Numerical resu](#page-64-0)lts showed promise.

Perspectives

- $\sqrt{\ }$ Application of structure preserving schemes, in particular exactly curl-free schemes.
- Splitting of the fluxes to separate fast waves for less constraining time-steps (IMEX, Semi-Implicit, ...)
- Investigation of the sharp interface limit ($\gamma \to 0$) and Asymptotic Preserving schemes.
- Generalization of the hyperbolic model to the non-isothermal case.

Some results using exactly curl-free schemes

Figure 3: Comparison of the overall shape of the gradient field component p_1 with both a staggered curl-free discretization (left) and with a MUSCL-Hancock scheme (right). Results are shown for $t = 2$ on a 512×512 grid.

Some results using exactly curl-free schemes

Figure 4: Comparison of the discrete curl errors over time.

Thank you for your attention !

[1] Dhaouadi, Firas, and Michael Dumbser. "A first order hyperbolic reformulation of the Navier-Stokes-Korteweg system based on the GPR model and an augmented Lagrangian approach." Journal of Computational Physics 470 (2022): 111544.

[2] Dhaouadi, Firas, and Michael Dumbser. "A Structure-Preserving Finite Volume Scheme for a Hyperbolic Reformulation of the Navier–Stokes–Korteweg Equations." Mathematics 11.4 (2023): 876.

(Check also the references therein).

Dispersion relation

Figure 5: Plot of the phase velocity (left) and the decay rate for several values of α along their counterparts for the Navier-Stokes-Korteweg system. The model parameters are as follows $\gamma=10^{-3}$, $\mu=10^{-3}$ and $\rho = 1.8$

Scaling of relaxations

Representative characteristic velocities

$$
\begin{cases}\n\lambda_{18} = u_1 - \sqrt{Z_1 + Z_2} \\
\lambda_{19} = u_1 - \sqrt{Z_1 - Z_2} \\
\lambda_{20} = u_1 + \sqrt{Z_1 + Z_2} \\
\lambda_{21} = u_1 + \sqrt{Z_1 - Z_2}\n\end{cases}, \n\begin{cases}\nZ_1 = \frac{1}{2} (a_0^2 + a_s^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2), \\
Z_2 = \sqrt{Z_1^2 - a_\beta^2 (a_0^2 + a_\alpha^2 + a_s^2)}, \\
a_0 = \sqrt{\rho W''(\rho)}, \quad a_s = \sqrt{\frac{4}{3} c_s^2}, \\
a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho} p_1^2}\n\end{cases}
$$

The different relaxation contributions scale as

$$
a_{\alpha}^{2} \sim \frac{1}{\alpha}, \quad a_{\beta}^{2} \sim \frac{\gamma}{\beta \rho}, \quad a_{s}^{2} \sim c_{s}^{2}
$$

To keep the contributions at the same order of magnitude, we can take for example

$$
\beta = \gamma \alpha, \quad c_s = \frac{1}{\sqrt{\alpha}}
$$