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Cahn-Hilliard equations (1958)

The Cahn-Hilliard equation is postulated as a conservative diffusion equation which
writes

∂c

∂t
= ∆

(
c3 − c− γ∆c

)
.

c ∈ [−1, 1] is the order parameter indicating the phases.

γ ≪ 1 is such that
√
γ is the diffuse interface characterstic length.

describes well the process of phase separation in binary systems: spinodal
decomposition, Ostwald Ripening phenomena, etc

Has applications for modeling binary alloys, sedimentation problems, etc ...
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About the equation

∂c

∂t
= ∆

(
c3 − c− γ∆c

)
.

Cool features

scalar PDE.

Well-posed.

diffuse-interface model (able to deal with strong topological changes).

Not so cool features

non-convex energy potential (Requires very careful treatment)

4th Order in space (Forget about explicit solvers)

Violates principle of Causality (Laplace operator)
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Conservative form and chemical potential

The Cahn-Hilliard equation can be cast into a conservation-law form which writes

∂c

∂t
+ div (j) = 0, (1)

where the mass flux j is assumed to obey a generalized Fick’s law such that

j = −∇µ,

and µ is the chemical potential of the system given by

µ =
δf

δc
=

∂f

∂c
− div

(
∂f

∂∇c

)
= c3 − c− γ∆c,

where

f(c,∇c) =

(
c2 − 1

)2
4

+
γ

2
||∇c||2,
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Lyapunov functional

CH equation admits the Lyapunov functional

F (c,∇c) =

∫
D
f(c,∇c) dΩ

Indeed, we have
∂f

∂t
+ div (µJ) = − ||∇µ||2 ,

which in integral form writes

∂F

∂t
= −

∫
D
||∇µ||2 dΩ ≤ 0.
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Modified action functional

Let us introduce the following action functional

a =

∫
t

∫
D
L dDdt

where

L
(
c, φ,∇φ,

∂φ

∂t

)
= −

(
c2 − 1

)2
4

− γ

2
||∇φ||2 − α

2
(c− φ)2 +

β

2

(
∂φ

∂t

)2

.

φ is a new variable substituting c as the order parameter.

α ≫ 1 so that (c− φ) vanishes in the limit α → +∞.

β ≪ 1 is a small parameter.
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Generalized Fick’s law for c

L
(
c, φ,∇φ,

∂φ

∂t

)
= −

(
c2 − 1

)2
4

− γ

2
||∇φ||2 − α

2
(c− φ)2 +

β

2

(
∂φ

∂t

)2

.

Generalized Fick’s law now becomes

∂c

∂t
+ div (−∇µ) = 0, µ = −δL

δc
= −∂L

∂c
= c3 − c+ α(c− φ),

⇒ 2nd-order PDE, no 4th-order terms

∂c

∂t
−∆

(
c3 − c+ α(c− φ)

)
= 0, (I)
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Euler-Lagrange equation for φ

L
(
c, φ,∇φ,

∂φ

∂t

)
= −

(
c2 − 1

)2
4

− γ

2
||∇φ||2 − α

2
(c− φ)2 +

β

2

(
∂φ

∂t

)2

.

For φ, we simply write the Euler-Lagrange equations.

∂

∂t

(
∂L
∂φt

)
+ div

(
∂L
∂∇φ

)
=

∂L
∂φ

.

which gives

β
∂2φ

∂t2
− div (γ∇φ) = α(c− φ) (II)
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2nd-order approximation
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Analysis

2nd-order approximation of the Cahn-Hilliard equation

Thus so far we have obtained the following system of two 2nd order PDEs

∂c

∂t
−∆

(
c3 − c+ α(c− φ)

)
= 0, (I)

β
∂2φ

∂t2
− γ∆φ = α(c− φ). (II)

Equation (I) is reminiscent of heat equation.
⇒ Cattaneo-type relaxation.

Equation (II) is a hyperbolic wave equation with right-hand side. ⇒ Order
reduction.
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Order reduction for (II)

β
∂2φ

∂t2
− div (γ∇φ) = α(c− φ) (II)

Let us denote the independent variables

w = β
∂φ

∂t
, p = ∇φ.

Therefore (II) becomes

∂w

∂t
− div (γp) = −α(φ− c),

∂φ

∂t
=

1

β
w,

∂p

∂t
− 1

β
∇w = 0.
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Relaxation for equation (I)

∂c

∂t
+ div

(
1

τ
q

)
= 0,

∂q

∂t
+∇µ = −1

τ
q,

τ ≪ 1 is a relaxation time.

c is still a conserved quantity in this framework.
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Final system approximating the Cahn-Hilliard equations

∂c

∂t
+ div

(
1

τ
q

)
= 0

∂q

∂t
+∇

(
c3 − c+ α(c− φ)

)
= −1

τ
q

∂w

∂t
− div (γp) = −α(φ− c)

∂p

∂t
− 1

β
∇w = 0

∂φ

∂t
=

1

β
w

System of hyperbolic equations with relaxations.
Equations are conservative also in multiple dimensions.

(Has curl involutions on both q and p if you want to test curl-free schemes ...)
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Hyperbolicity

System admits a full set of real eigenvalues (α > 1) given by

λ1 = −
√
3c2 + α− 1√

τ
,

λ2 = −
√
γ√
β
,

λ3−7 = 0,

χ8 =

√
γ√
β
,

λ9 =

√
3c2 + α− 1√

τ
.

and a corresponding set of linearly independent eigenvectors. (easily computed
explicitly).
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Lyapunov Functional

Proposition

The proposed hyperbolic Cahn-Hilliard system admits the following Lyapunov
functional

E =

∫
D
e(c, φ,q,p, w) dΩ,

e(c, φ,p, w) =

(
c2 − 1

)2
4

+
γ

2
||p||2 + α

2
(c− φ)2 +

1

2β
w2 +

1

2τ
||q||2
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Proof

We express the fluxes as a function of the conjugate variables

∂c

∂t
+ div

(
∂e

∂q

)
= 0

∂q

∂t
+∇

(
∂e

∂c

)
= − ∂e

∂q

∂w

∂t
− div

(
∂e

∂p

)
= − ∂e

∂φ

∂p

∂t
−∇

(
∂e

∂w

)
= 0

∂φ

∂t
=

∂e

∂w

=⇒ ∂e

∂t
+ div

(
∂e

∂c

∂e

∂q
− ∂e

∂p

∂e

∂w

)
= −

∣∣∣∣∣∣∣∣ ∂e∂q
∣∣∣∣∣∣∣∣2 ≤ 0,
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Numerical methods

In order to solve the model numerically and also compare it with reference solutions,
we propose here:

1 A numerical scheme for the original Cahn-Hilliard equation based on 4th order
semi-implicit conservative finite differences

2 Explicit MUSCL-Hancock for the hyperbolic approximation.
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Implicit conservative finite differences for CH

We propose here a semi-implicit conservative in order to solve numerically the original
Cahn-Hilliard equations. We rewrite the latter as follows

∂c

∂t
− div (F) + γ∆2c = 0

where F is the flux given by

F = χ(c)∇c, χ(c) = 3c2 − 1

The scheme writes

cn+1
i,j =cni,j +

∆t

∆x

(
Fn+1
i+ 1

2
,j
−Fn+1

i− 1
2
,j

)
+

∆t

∆y

(
Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)
− γ∆∆hc

n+1
i,j .
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Computation of the intercell fluxes

The intercell fluxes Fn+1
i+ 1

2
,j
and Gn+1

i,j+ 1
2

, in the x and y directions respectively, are

computed using conservative finite-differences as follows

Fn+1
i+ 1

2
,j
= χn

i+ 1
2
,j
(∇xc)

n+1
i+ 1

2
,j
,

χn
i+ 1

2
,j
≃ 1

12

(
7χn

i,j − χn
i−1,j + 7χn

i+1,j − χn
i+2,j

)
(∇xc)

n+1
i+ 1

2
,j
≃ − 1

12∆x

(
15 cn+1

i,j − 15 cn+1
i+1,j + cn+1

i+2,j − cn+1
i−1,j

)
(similarly for Gn+1

i,j+ 1
2

)

These are 4th order approximations.
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Discretization of the bi-Laplacian operator

∆∆hc
n+1
i,j is a discretization of the bi-Laplacian operator in the cell-centers as follows

∆∆hc
n+1
i,j =− 1

∆x4

(
cn+1
i−2,j − 4cn+1

i−1,j + 6cn+1
i,j − 4cn+1

i+1,j + cn+1
i+2,j

)
− 1

∆y4

(
cn+1
i,j−2 − 4cn+1

i,j−1 + 6cn+1
i,j − 4cn+1

i,j+1 + cn+1
i,j+2

)
− 2

∆x2∆y2
(
cn+1
i−1,j−1 − 2cn+1

i,j−1 + cn+1
i+1,j−1 − 2cn+1

i−1,j

+ 4cn+1
i,j − 2cn+1

i+1,j + cn+1
i−1,j+1 − 2cn+1

i,j+1 + cn+1
i+1,j+1

)

cn+1
i,j =cni,j +

∆t

∆x

(
Fn+1
i+ 1

2
,j
−Fn+1

i− 1
2
,j

)
+

∆t

∆y

(
Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)
− γ∆∆hc

n+1
i,j .

is then solved using GMRES (Matrix is not symmetric ...)

Firas DHAOUADI HONOM 2024, Chania 20 / 29



On the Cahn-Hilliard equations
Hyperbolic Model Derivation

Numerical scheme and Results

Numerical schemes
Numerical results
Conclusion

Discretization of the bi-Laplacian operator

∆∆hc
n+1
i,j is a discretization of the bi-Laplacian operator in the cell-centers as follows

∆∆hc
n+1
i,j =− 1

∆x4

(
cn+1
i−2,j − 4cn+1

i−1,j + 6cn+1
i,j − 4cn+1

i+1,j + cn+1
i+2,j

)
− 1

∆y4

(
cn+1
i,j−2 − 4cn+1

i,j−1 + 6cn+1
i,j − 4cn+1

i,j+1 + cn+1
i,j+2

)
− 2

∆x2∆y2
(
cn+1
i−1,j−1 − 2cn+1

i,j−1 + cn+1
i+1,j−1 − 2cn+1

i−1,j

+ 4cn+1
i,j − 2cn+1

i+1,j + cn+1
i−1,j+1 − 2cn+1

i,j+1 + cn+1
i+1,j+1

)

cn+1
i,j =cni,j +

∆t

∆x

(
Fn+1
i+ 1

2
,j
−Fn+1

i− 1
2
,j

)
+

∆t

∆y

(
Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)
− γ∆∆hc

n+1
i,j .

is then solved using GMRES (Matrix is not symmetric ...)
Firas DHAOUADI HONOM 2024, Chania 20 / 29



On the Cahn-Hilliard equations
Hyperbolic Model Derivation

Numerical scheme and Results

Numerical schemes
Numerical results
Conclusion

Numerical method for hyperbolic approximation

Explicit second-order MUSCL-Hancock scheme

We use either FORCE or Rusanov approximate Riemann solvers (One could also
implement a Roe solver)
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Exact solution for the original equation

One can find a family of exact one-dimensional stationary periodic solutions to the
Cahn-Hilliard system expressed as

cϵ(x) =
√
1− ϵ sn

(√
ϵ+ 1

2γ
(x− x0),

√
1− ϵ

1 + ϵ

)

Here, sn(x, s) is the Jacobi elliptic sine function, and s is the elliptic modulus.
ϵ ∈ [0, 1].
It is worthy of note that in the limit ϵ → 0 corresponding to s → 1, one recovers the
well-known solution

c(x) = tanh

(
x− x0√

2γ

)
as a particular case.
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Exact elliptic function solution

0 λ/2 λ 3λ/2 2λ

x[−]

−1.0
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Figure 1: γ = 0.001. Computational domain is [0, 2λ], discretized over N = 2000 cells.
β = 10−6, α = 500 and τ = 8.10−4. CFL = 0.95 and final simulation time is t = 10.
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Spinodal decomposition

We suggest the following initial data

c(x) =

{
0.01

(
(sin(10π(1 + x))− sin

(
10π(1 + x)2

))
, if x ∈ [−1, 0]

−0.01
(
(sin(10π(1− x))− sin

(
10π(1− x)2

))
, if x ∈ [0, 1].

This function is built in such a way that it is C∞ over [−1, 1] as well as over R by
periodic prolongation.
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Spinodal decomposition (γ = 10−3, β = 10−7, α = 500, τ = 10−5)
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Figure 2: Comparison of the numerical results between the original model (orange) and its
hyperbolic counterpart (black). N = 2000 computational cells.
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Ostwald Ripening in 1D (γ = 10−3, β = 10−7, α = 500, τ = 10−4)
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0.0 0.25 0.5 0.75 1.0

x[−]

−1.0

−0.5

0.0

0.5

1.0

c[
−

],
ĉ[
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Figure 3: Comaprison of the numerical solutions for hyperbolic Cahn-Hilliard model (black line)
and the original model (red dots)for the Ostwald Ripening test case at times t = {0, 0.1, 0.3}.
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Ostwald Ripening in 2D(γ = 10−3, β = 10−7, α = 500, τ = 10−5)
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Ostwald Ripening in 2D : horizontal Cuts
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Figure 4: Horizontal cuts over the lines y = 0 (red) and y = 0.4 (black). Domain is 600× 720
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Conclusion and Perspective

We presented a new formulation for an approximate hyperbolic Cahn-Hilliard
system.

An original scheme was conceived to solve the original equation using conservative
finite differences.

Comparison of results showed excellent agreement between the results in one and
two dimensions.

Perspectives

Better formulation fully from variational principles if possible.

Extension to Navier-Stokes Cahn-Hilliard systems.

Investigation of bound-preserving properties.

Semi-implicit discretization, asymptotic preserving schemes, time-step
optimization, etc ...
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Thank you for your attention !
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