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Cahn-Hilliard equations (1958)

The Cahn-Hilliard equation is postulated as a conservative diffusion equation which
writes

de
ot

@ ¢ € [—1,1] is the order parameter indicating the phases.

A(c3—c—’yAc).

@ v < 1is such that /7 is the diffuse interface characterstic length.

@ describes well the process of phase separation in binary systems: spinodal
decomposition, Ostwald Ripening phenomena, etc

@ Has applications for modeling binary alloys, sedimentation problems, etc ...
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About the equation

%:A(CS—C—’}/AC).
Cool features
@ scalar PDE.
o Well-posed.

o diffuse-interface model (able to deal with strong topological changes).
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About the equation

%:A( 3—c—'yAc).
Cool features
@ scalar PDE.
o Well-posed.

o diffuse-interface model (able to deal with strong topological changes).
Not so cool features

@ non-convex energy potential (Requires very careful treatment)

@ 4th Order in space (Forget about explicit solvers)

@ Violates principle of Causality (Laplace operator)
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On the Cahn-Hilliard equations

Conservative form and chemical potential

The Cahn-Hilliard equation can be cast into a conservation-law form which writes

Oc
ot

where the mass flux j is assumed to obey a generalized Fick's law such that

+div (j) =0,

j = _vlua
and p is the chemical potential of the system given by

Y (Y

— 3 .
H=%c ™ dc 8Vc> = —cmAe

where

(2-1)%
1 2
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On the Cahn-Hilliard equations

Lyapunov functional

CH equation admits the Lyapunov functional

F(e,Ve) = /Df(c, Ve) dS)

Indeed, we have

of | .. _ 2
5 T div () = —lIVull”,

which in integral form writes

oF

2
— =- \Y% dQ) <0.
5 =~ [ IvulE de <o
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Hyperbolic reformulation

© Hyperbolic Model Derivation
@ 2nd-order approximation
@ 1st-order approximation approximation
@ Analysis
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2nd-order approximation
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Analysis

Modified action functional

Let us introduce the following action functional

a://LdDdt
tJD

0 2 —1)? o'
£ (0090 8) =S Tivpr - fe-e2 +

where

\)

@ ( is a new variable substituting ¢ as the order parameter.
@ a > 1 so that (¢ — ¢) vanishes in the limit & — +oc0.

@ 0 < 1 is a small parameter.
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Generalized Fick's law for ¢

Oy 2 —1)* B[Oy 2
£ 90 2) =S Tivalr - Se-vr + 5 (%)

Generalized Fick's law now becomes

de . B _ oL L _ g
5 TAV(VR) =0, p=—rn = - = —ctale-g),

= 2nd-order PDE, no 4th-order terms

%—A(C —c+alc—y)) =0, (I)
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Euler-Lagrange equation for ¢

2 2
8(,0 -1 ~ «a B [y

For ¢, we simply write the Euler-Lagrange equations.

2 a—£ + div _8£ —8—£
ot \ dpy OVp/) O

2
—div(yWVe) =alc—9) ()

which gives

0%p
5o 8752
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2nd-order approximation of the Cahn-Hilliard equation

Thus so far we have obtained the following system of two 2nd order PDEs

0

S AP —ctale—p) =0, (D)
82

ﬁa—tf —YAp=alc—y). ()
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2nd-order approximation of the Cahn-Hilliard equation

Thus so far we have obtained the following system of two 2nd order PDEs

0
S AP —ctale—p) =0, (D)
82
ﬁa—tf —YAp=alc—y). ()

e Equation (I) is reminiscent of heat equation.
= Cattaneo-type relaxation.
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2nd-order approximation of the Cahn-Hilliard equation

Thus so far we have obtained the following system of two 2nd order PDEs

0
S AP —ctale—p) =0, (D)
82
Ba—tf —YAp=alc—y). ()

e Equation (I) is reminiscent of heat equation.
= Cattaneo-type relaxation.

e Equation (II) is a hyperbolic wave equation with right-hand side. = Order
reduction.
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0% )
Bom —div(yVe) =alc—¢) ()

Let us denote the independent variables

0
w=5a—f, p=Vep.
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Order reduction for (/1)

0
b oz

Let us denote the independent variables

0
wzﬁa—f p = V.

Cdiv(yVg) —ale—g) (D)

Therefore (II) becomes

ow

5~ div(yp) = —alp — o),
dp _ 1

ot B’

op 1 B
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Relaxation for equation ([)

@ 7 < 1 is a relaxation time.

@ c is still a conserved quantity in this framework.
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Final system approximating the Cahn-Hilliard equations

%+V(03—c+a(c—gp)) :—%q
% div(7p) = ~alp — )
é;?—;VwO

@ System of hyperbolic equations with relaxations.
@ Equations are conservative also in multiple dimensions.
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Final system approximating the Cahn-Hilliard equations

%‘FV(CB—C-FOZ(C—QO)) :—%q
% div(7p) = ~alp — )
i;i)—;VwO

@ System of hyperbolic equations with relaxations.
@ Equations are conservative also in multiple dimensions.

(Has curl involutions on both q and p if you want to test curl-free schemes ...)
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Hyperbolicity

System admits a full set of real eigenvalues (o > 1) given by

V3t +a—1

M=
N,

/A
A3—7 =0,

+a—-1
VT
and a corresponding set of linearly independent eigenvectors. (easily computed

explicitly).
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Lyapunov Functional

Proposition

The proposed hyperbolic Cahn-Hilliard system admits the following Lyapunov
functional

E = / e(c, o, q,p,w) d,

(¢ 1) 2

1
efcsp,py0) = = + T Ipl + Sl 0)? + ppu® + ol
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We express the fluxes as a function of the conjugate variables

Oc .
at—l—le(
oq Oe
at+v((9c
ow .
8t_dlv<
op
at‘v(aw
¢ _ Oe
ot Ow
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Proof

We express the fluxes as a function of the conjugate variables

dc | Ot oq)

de [0q de Oe
s Lo v (%) =54
be .{‘9_w_d (%) __%e
ow ot Jp dy
Oe op Oe

w eV ()

de [dp  Oe
a@'{ﬁ‘a_w
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Proof

We express the fluxes as a function of the conjugate variables

Oe Jc . Oe
(9(; B {m‘f—dlv (m) —O

de [0q de Oe
sa (o (o)
00 g (2) e
ow ot Jp dy
Oe op de
w eV ()
de [0y  Oe
099.{t:8w
S Y 2T 2 O 1]
ot Ocdq Opow oql| — 7
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Numerical methods

In order to solve the model numerically and also compare it with reference solutions,
we propose here:

© A numerical scheme for the original Cahn-Hilliard equation based on 4th order
semi-implicit conservative finite differences

@ Explicit MUSCL-Hancock for the hyperbolic approximation.
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Implicit conservative finite differences for CH

We propose here a semi-implicit conservative in order to solve numerically the original
Cahn-Hilliard equations. We rewrite the latter as follows

oc
ge A2 =
T div (F) + vyA%c =0

where F' is the flux given by

F=X(c)Ve, X(c) =32 -1

The scheme writes

At At
n+1 n n—+1 n—+1 n+1 n+1 n+1
Cij A (‘7:@+2,J F- J) Ay <Q g+ -G i ) QZAVAVAG/S
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Computation of the intercell fluxes

The intercell fluxes ]—"”H] and Q”Tl, in the x and y directions respectively, are
27

computed using conservative finite- dlfferences as follows

+1 _ +n n+1
Firs = Xivss Vaoliiy o

X (TXE5 = Xy + TX = Xia)

noo L
i+1i = 19

1
+1 +1 +1 +1 +1
(ch)?+%,j ~ —m (15 n — 15 C?+1] + C?+27,] — c?*l])

R n+1
(similarly for gi’ﬂ%)
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Computation of the intercell fluxes

The intercell fluxes ]—"”H] and Q”Tl, in the x and y directions respectively, are
27

computed using conservative finite- dlfferences as follows

+1 _ +n n+1
Firs = Xivss Vaoliiy o

X (7X55 = Xitag + T X — Xihay)

noo L
i+1i = 19

n+l 1 n+1 - n-+1 n+l  n+l
(Val)is1i ™ "o As ( Dy T IPCL T G T Gy

He n+1
(similarly for gi’ﬂ%)

These are 4th order approximations.
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Discretization of the bi-Laplacian operator

AAhc?jl is a discretization of the bi-Laplacian operator in the cell-centers as follows

1
n+l _ n+l n—l—l n+1 n+1 n+1
AAth == Al (01;27] 4c;” it 6c; 4C,L+1J + cl+2’j)
1
_ n+l n+1 n+1 n+1 n+1
Ay4 (Ci,j—2 dc —1 + 6C 4Cz ,J+1 + G ]—1—2)
2
n+1 n+1 n+1 __9,.n+1
NI 5 (e o1 = 262 + el o — 20
n+1 n+1 n+1 n+1 n+1
+de T =200 G 2655+ H—l,g—l—l)
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Discretization of the bi-Laplacian operator

AAhc?jl is a discretization of the bi-Laplacian operator in the cell-centers as follows

A = g (e e o - 4+ )
o (a0 — g+ )
Ax22Ay (C?——'—ld 1~ 2 znj_ll + C?-:_ll,j—l N 20?1—113
n 4Cn+1 -~ 2C?++11] n cn+1lj+1 2021;:&1 ?f117]+1)

At At
n+1 n n+1 n+1 n+1 n+1 n+1
Ci’j + E <F7’+27.7 FZ_:]) T Ay Ay <g :]+2 g173_5> VAAhC ‘

is then solved using GMRES (Matrix is not symmetric ...)
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Numerical method for hyperbolic approximation

@ Explicit second-order MUSCL-Hancock scheme

@ We use either FORCE or Rusanov approximate Riemann solvers (One could also
implement a Roe solver)

Firas DHAOUADI HONOM 2024, Chania 21/29



Numerical schemes
Numerical results
Numerical scheme and Results Conclusion

Exact solution for the original equation

One can find a family of exact one-dimensional stationary periodic solutions to the
Cahn-Hilliard system expressed as

ce(x) =1 —€sn (1/6;;/1(:6—1‘0), 1;§)

Here, sn(z, s) is the Jacobi elliptic sine function, and s is the elliptic modulus.
€€ [0,1].
It is worthy of note that in the limit ¢ — O corresponding to s — 1, one recovers the

well-known solution
T — X0
¢(x) = tanh ( >
V2y

as a particular case.
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Exact elliptic function solution

1.0 20

0.5 10

— 00 0
=

—0.5 ~10

~1.0 —20

| =c(w,t =0) = clz,t = 10) * p(x,t = 10) | 20 | =co(e,t=0) = colw,t =10) = p(z,t = 10) ||
0 \/2 A 3\/2 2\ 0 \/2 A 3\/2 2

z[-] (-]
Figure 1: v = 0.001. Computational domain is [0, 2], discretized over N = 2000 cells.
B8=10"% o =500 and 7 = 8.10~*. CFL = 0.95 and final simulation time is ¢ = 10.
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Spinodal decomposition

We suggest the following initial data

(2) = 0.01 ((sin(107(1 + z)) —sin (107 (1 + )?)), if z € [-1,0]
| -0.01 ((sin(107(1 — z)) — sin (107(1 — x)?)), if = € [0,1].
This function is built in such a way that it is C*> over [—1, 1] as well as over R by
periodic prolongation.

t =0.00
0.]. T T T

] AN A SVAVAY A VA
Q

_0.1 1 1 1
—1.0 —-0.5 0.0 0.5 1.0
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Spinodal decomposition (7 = 1073, 8 = 10", a = 500, 7 = 1079)

t =0.00 t=0.10 t = 4.00

1.0 T T T 1.0F T T T ] 1.0 T T T

05 7 0.5 0.5

| |
0.0 foresmssmaromstngmongos-os-ome-sne] TU 0.0 TQ 0.0
< <
—05F - -0.5 -0.5
—c-°¢
_1 0 1 1 1 —1.0 C 1 1 1 N —1.0 1 1 1
0.0 05 1.0 15 20 00 05 1.0 15 20 0.0 05 1.0 15 20

(-] (-] (-]
Figure 2: Comparison of the numerical results between the original model (orange) and its
hyperbolic counterpart (black). N = 2000 computational cells.
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Ostwald Ripening in 1D (y =103, 8 =107, a = 500, 7 = 10~ %)

t=0
T T T
1.0 1.0 1.0
0.5 05 05
| |
0.0 < 00 <00
| |
= -
~0.5 0.5 0.5
71.0_ 1 1 1 _10 1 1 1 _10 1 1 1
0.0 025 05 075 1.0 0.0 025 05 075 1.0 0.0 025 05 075 1.0
][] z[-] z[—]

Figure 3: Comaprison of the numerical solutions for hyperbolic Cahn-Hilliard model (black line)

and the original model (red dots)for the Ostwald Ripening test case at times ¢t = {0,0.1,0.3}.
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Ostwald Ripening in 2D(v = 1073, 8 = 107", & = 500, 7 = 10°)

= C

S 1.0

s

=

2

3 0.5
0.0

= -0.5

&}

E

£

)

£ -1.0

<

t=0.01

O »
AP R

t=0.20 t=1.00
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Ostwald Ripening in 2D : horizontal Cuts

t=10.01 t=0.20
1.0F ' ' ' 3 1.0
0.5 . 0.5
L oof 1L 00 L
<Qi - <L3\ - <LB\
0 0 0
T —0.5¢F TCy=0) H T —0.5 =
* &(y=0)
-1.0F =00 10
° E(y=0.4)
1 1 I 1 1 1 1 1 1
—0.50-0.25 0.00 0.25 0.50 —0.50-0.25 0.00 0.25 0.50 —0.50-0.25 0.00 0.25 0.50

z[-] z[-] z[-]
Figure 4. Horizontal cuts over the lines y = 0 (red) and y = 0.4 (black). Domain is 600 x 720
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Conclusion and Perspective

@ We presented a new formulation for an approximate hyperbolic Cahn-Hilliard
system.

@ An original scheme was conceived to solve the original equation using conservative
finite differences.

@ Comparison of results showed excellent agreement between the results in one and
two dimensions.

Perspectives
@ Better formulation fully from variational principles if possible.
@ Extension to Navier-Stokes Cahn-Hilliard systems.
@ Investigation of bound-preserving properties.
o Semi-implicit discretization, asymptotic preserving schemes, time-step

optimization, etc ...
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Thank you for your attention !

[1] Dhaouadi, Firas, Michael Dumbser, and Sergey Gavrilyuk. " A first-order hyperbolic reformulation
of the Cahn-Hilliard equation.” arXiv preprint arXiv:2408.03862 (2024).
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