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Navier-Stokes-Korteweg equations

In general, the equations write

pt + div(pu) =0
(pu); +div(pu ®@ u) + Vp(p) = S + K

where p = p(x,t), u = u(x,t) and (x,t) € R? x [0, T]
The (dispersive) Korteweg stress tensor is given by:

K =pV (K(p)Ap + %K’(p)\VpV)

and the (viscous) Navier-Stokes stresses are given by

2
S=u (Vu + Vul — gdiv(u)1>
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system
Numerical methods
Conclusion

Main objective

Given the Navier-Stokes-Korteweg system of equations :
pt + div(pu) =0

(pu): + div(pu ® u) + Vp(p)= pV (K(p)Ap + %K’(p)W!Q)

2
+u (Vu + Vul — §div(u)1)
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Main objective

Given the Navier-Stokes-Korteweg system of equations :
pt + div(pu) =0 |
(pu)¢ + div(pu ® u) + Vp(p)= pV (K(p)Ap + §K’(p)Vp\2)
2
+u (Vu +Vul — gdiv(u)I)

v' General model for viscous-dispersive fluid flows.
v" A diffuse interface option for viscous two-phase flows.
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Main objective

Given the Navier-Stokes-Korteweg system of equations :

pt + div(pu) =0 |
(pu): + div(pu ® u) + Vp(p)= pV (K(p)Ap + §K’(p)Vp\2)

2
+u (Vu +Vul — gdiv(u)1>

v' General model for viscous-dispersive fluid flows.

v" A diffuse interface option for viscous two-phase flows.

X contains high order derivatives (2nd and 3rd order).
= Crippling time-stepping.
= Has non-local operators.

X Often associated with non-convex equations of state.
= Loss of hyperbolicity in the left-hand side.

Suggested solution
A first-order hyperbolic approximation of the NSK system.
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Our model wishlist

We would like a model that

@ approximates Euler-Korteweg in some limit.

@ is derived from a variational principle (whenever possible).
@ is in line with the laws of thermodynamics.
°

can be solved numerically with accurate numerical methods.
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Our model wishlist

We would like a model that

@ approximates Euler-Korteweg in some limit.

@ is derived from a variational principle (whenever possible).
@ is in line with the laws of thermodynamics.
°

can be solved numerically with accurate numerical methods.

Hyperbolic equations

@ well-posed IVP (Symmetric Hyperbolic)

@ A very rich literature on numerical methods.

@ Bounded wave speeds (Principle of causality)
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A non-exhaustive subset of connected works and topics

@ A family of Parabolic relaxation models of NSK equations.
= Corli, Rohde, Schleper 2014 (DG for NSK)
= Hitz,Keim,Munz,Rohde 2020 (Barotropic case)
= Keim,Munz,Rohde 2023 [non-Isothermal NSK]
and many other works...
@ Hyperbolic approximation of Euler-Korteweg equations.
= Dhaouadi, Favrie, Gavrilyuk 2019. (Schrodinger equation)
= Dhaouadi, Gavrilyuk, Vila 2022. (Thin films).
= Bourgeois, Lombard, Favrie 2020 (Solids with nonconvex EQS)
= Bresch et al.,2020 (2nd Order Hyperbolic)
© Hyperbolic reformulation of Navier-Stokes equations.
= GPR model of continuum mechanics.[Godunov 1961,Romenski
1998, Peshkov et al. 2016]

Firas Dhaouadi DroplT seminar, March 2024 5/42



A non-exhaustive subset of connected works and topics

@ A family of Parabolic relaxation models of NSK equations.
= Corli, Rohde, Schleper 2014 (DG for NSK)
= Hitz,Keim,Munz,Rohde 2020 (Barotropic case)
= Keim,Munz,Rohde 2023 [non-Isothermal NSK]
and many other works...
@ Hyperbolic approximation of Euler-Korteweg equations.
= Dhaouadi, Favrie, Gavrilyuk 2019. (Schrodinger equation)
= Dhaouadi, Gavrilyuk, Vila 2022. (Thin films).
= Bourgeois, Lombard, Favrie 2020 (Solids with nonconvex EQOS)
= Bresch et al.,2020 (2nd Order Hyperbolic)
© Hyperbolic reformulation of Navier-Stokes equations.
= GPR model of continuum mechanics.[Godunov 1961,Romenski
1998, Peshkov et al. 2016]

Combine our augmented Lagrangian model with the general GPR
model of continuum mechanics.
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Outline

@ Hyperbolic reformulation of the Navier-Stokes-Korteweg system
@ Hyperbolic reformulation of the Euler-Korteweg system
@ Extension to the Navier-Stokes-Korteweg system
@ A few words on hyperbolicity

© Numerical methods
e ADER-DG + GLM curl-cleaning
@ Exactly curl-free numerical scheme
@ Some numerical results

© Conclusion
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Numerical methods Extension to the Navier-Stokes-Korteweg system
Conclusion A few words on hyperbolicity

Dissipationless Euler-Korteweg-Van Der Waals equations

The equations write :

{ pt + div(pu) =0
(pu); + div(pu @ u) + VP(p) = pV (K (p)Ap+ 5K (p)|Vp|?)

where p = p(x,t), u = u(x,t) and (x,t) € R? x [0, T]
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Lagrangian for the Euler-Korteweg-VdW system

(EK) system can be derived from the Lagrangian :

2 2
L :/ <p|u] — W(p)—'yv—p’> dS2
o \ 2 2

Variational principle
+
Differential constraint : p; + div(pu) =0

\4

(pu)¢ + div(pu ®u) + V(P(p)) = 1pV(Ap)

with P(p) = pW'(p) — W(p)
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Augmented Lagrangian approach

L(u,p,Vp) = /

Q4

1 Vpl?
<§p [u* — W(p) — 7%) ds)

pt +div(pu) =0

'Augmented’ Lagrangian approach [Favrie-Gavrilyuk 2017]

~

L(u,p,n,Vn)  (n—p)
z:/m (ﬂ _wip)— A 1p(p—n)2> 10

2 2c

1
— (p —n)?: Classical Penalty term
2ap
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Numerical methods Extension to the Navier-Stokes-Korteweg system
Conclusion A few words on hyperbolicity

Hints on calculus of variations (For general K (p))

ﬁ:/ pﬂz_w(p)_ww_mz_ﬁ n_ i 40
Q, 2 2 20 \ p

ox
LW, p,1,Vn) = Two Euler-Lagrange equations
——

on
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
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A few words on hyperbolicity

Hints on calculus of variations (For general K (p))

dx
LW, p,1,Vn) = Two Euler-Lagrange equations
——

on

@ Virtual displacement of the continuum (0x):

@ variation of the independent variable 1 (d7):
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Preliminary system

By applying Hamilton's principle for the Eulerian variations éx and
0n one obtains the system of governing equations

(pt + div(pu) =0
(pu)¢ + div (pu @ u) + V (P(p)) = div(Ka)
A= (1-3)

N\

where: K, = (1|V77|2 0 ( — Q)) Id - YVn® Vn
2 « p
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where: K, = (1|V77|2 7 (1 — Q)) Id —yVn® Vn
2 « p

Replacing the relaxation term in the stress tensor yields

y
K, = (glvn\QH??An) Id —yVn® Vn

div(K,) = ynV(An), original: div(K) = vpV(Ap)
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This is the system we have

(pt + div(pu) =0
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system

Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Preliminary system

This is the system we have
( .

pt +div(pu) =0
(pu); + div (pu @ u) + V (P(p)) = div(K,)
()t“— - ’}/Aﬁ = é (1 >

K, —(—\W\Q a( —%))Id—yVn@Vn

The obtained system :

N\

bld

where:

X still contains high order derivatives.
X is not hyperbolic.
X has an elliptic constraint.

Idea : Include 7 into the Lagrangian !
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

~

L(u,p,n,Vn,n) oK1

1
2ap

2
~ u Y bp .
L= /Q p‘—' - Wi(p) — §\V77|2— (p— n)2+7n2 ds

Firas Dhaouadi DroplT seminar, March 2024 13 /42



Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

~

L(u,p,n,Vn,n) oK1

2
- u 1 Bp .
£=/Q (p‘—' —W(p)—%WW— (p—n)2+—pn2> d

2 200 2
1
Variational principle : a = / L dt
to

(i + div(pu) =0
(pu); +div (pu ®@ u — Ka(p, 1, Vn)) + VP(p) =0
(Bpi)e +div (Bpina =7 V) = § (1 _ %)

7\

Firas Dhaouadi DroplT seminar, March 2024 13 /42



Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

~

L(u,p,n,Vn,n) oK1

2
- u 1 Bp .
£=/Q (p‘—' —W(p)—%\WIQ— (p—n)2+—pn2> d

2 200 2
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Variational principle : a = / L dt
to

(i + div(pu) =0
(pu); +div (pu ®@ u — Ka(p, 1, Vn)) + VP(p) =0
(Bpi)e +div (Bpina =7 V) = § (1 _ %)

= Better, but there are still high-order derivatives!
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Order reductions

@ We take w = 7 as independent variable. Thus:

w=mn+u-Vnp = |(pn)+ div(pnu) = pw
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@ We take p = V7 as independent variable. Take again

w=mn+u-Vny
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@ We take w = 7 as independent variable. Thus:

w=mn+u-Vnp —

(pn)e + div(pnu) = pw

@ We take p = V7 as independent variable. Take again
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Order reductions

Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

@ We take w = 7 as independent variable. Thus:

w=mn+u-Vnp —

(pn)t + div(pnu) = pw

@ We take p = V7 as independent variable. Take again
Vw=V(n+u-Vn)

— p:+V(p-u—w)=0

@ Important: Initial data must be such that:
p(x,0) = Vn(x,0), w(x,0)=1(x,0)
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system

Order reductions

Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

@ We take w = 7 as independent variable. Thus:

w=mn+u-Vnp —

(pn)t + div(pnu) = pw

@ We take p = V7 as independent variable. Take again
Vw=V(n+u-Vn)

— p:+V(p-u—w)=0

@ Important: Initial data must be such that:
p(x,0) = Vn(x,0), w(x,0)=1(x,0)
o IMPORTANT: p=Vn = Vxp=0
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Final form of the approximate Euler-Korteweg system

pt  + div(pu) =0
(pu); + div(pu®u+ P(p)Id —K,) =0
| (pw)e + div (pwu - yp) = L (1- 1)
pr +Vp-u—w) =0
| (o)t + div(pnu) = pw

K, = (glplz—ﬁ<1—ﬂ))1d—’yp®p
a p

Firas Dhaouadi DroplT seminar, March 2024 15 /42



Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Final form of the approximate Euler-Korteweg system

pt  + div(pu) =0
(pu); + div(pu®u+ P(p)Id —K,) =0
| (pw)e + div (pwu - yp) = L (1- 1)
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But recall that p=Vn = V xp=0 ..
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pt  + div(pu) =0
(pu); + div(pu®u+ P(p)Id —K,) =0
| (pw)e + div (pwu - yp) = L (1- 1)
pr +V(p-u—w) + (Vxp) xu=0
| (o)t + div(pnu) = pw

K, = (glplz—ﬁ<1—ﬂ))1d—’yp®p
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But recall that p=Vn = V xp=0 ..
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Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Final form of the approximate Euler-Korteweg system

pt  + div(pu) =0
(pu); + div(pu®u+ P(p)Id —K,) =0

Y (pw): + div(pwu —yp) = & (1— %)
pr +Vp-u—w)+ (Vxp) xu=0

| (o)t + div(pnu) = pw

K, = (%Iplz—ﬁ<1—ﬂ)>1d—vp®p
a p

But recall that p=Vn = V xp=0 ..
= Now the system is Gallilean invariant...
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Final form of the approximate Euler-Korteweg system

pt  + div(pu) =0
(pu); + div(pu®u+ P(p)Id —K,) =0
| (pw)e + div (pwu - yp) = L (1- 1)
pr +V(p-u—w) + (Vxp) xu=0
| (o)t + div(pnu) = pw

K, = (%Iplz—ﬁ<1—ﬂ>>1d—vp®p
a p

But recall that p=Vn = V xp=0 ..
= Now the system is Gallilean invariant... But is it hyperbolic ?

Firas Dhaouadi DroplT seminar, March 2024 15 /42



Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows :
Reminder (P(p): hydrostatic pressure, p = 1,)

(Y1 = 5(a” + a2 + a2 + a3)

N[— DN

u _ 2\2 2,2

( Yo = =4/(a® 4+ a2 + a2 — a%)? + 4a4a

u+¢7¢1+w2\ Vi v

§= U+ /Y1 — P with < a = P’(Ig)7 ay = ZPQ
p

Vi1 + o
\u— v
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Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Hyperbolic reformulation of the Navier-Stokes-Korteweg system

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows :
Reminder (P(p): hydrostatic pressure, p = 1,)

(Y1 =3(a” + a3 +ag +a)

N[— DN

Py R R R RT R e
E=1| u+vir—2 | with ¢ , — P'(p), ay= lpg

Vi1 + o p
\U—\/ibl— )

a”: adiabatic sound speed.
a~: wave speed due to capillarity .
aq and ag: First and second relaxation speeds.
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system

A few words on hyperbolicity

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows :
Reminder (P(p): hydrostatic pressure, p = 1,)

(i = (a2+a3+a§+a%)

N[— DN

U - 2\2 2.9
( g = \/(a2+a2+a2—a) + 4a%a
u+¢%¢@5\ vooe P y

E=| ut v | with { o= /P, a = [Lp?
Vb1 + g i
\ o v

a’: adiabatic sound speed. (negative in non-convex regions!!)

a~: wave speed due to capillarity .
aq and ag: First and second relaxation speeds.

Firas Dhaouadi DroplT seminar, March 2024 16 /42



Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Van der Waals equation of state

In the context of two-phase flows, the equation of state is
non-convex
pRT

2
= — — 0, b>0
1 —bp ap”, a>Vu, o>

p

p(p) ‘
pressure

0 015 1 115 2 2.5 P
Figure 1: Van der Waals pressure for T'=0.85,a =3,b=1/3,R =8/3

Firas Dhaouadi DroplT seminar, March 2024 17 /42



Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system

Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

What we have so far

@ We proposed a first-order hyperbolic reformulation for the
dispersive Euler-Korteweg equations.

@ This reformulation remains hyperbolic even in non-convex
regions of the free energy.

@ So far, no dissipation is taken into account.
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

What we have so far

@ We proposed a first-order hyperbolic reformulation for the
dispersive Euler-Korteweg equations.

@ This reformulation remains hyperbolic even in non-convex
regions of the free energy.

@ So far, no dissipation is taken into account.

@ Proposed model for Euler-Korteweg is strongly hyperbolic in
1D, weakly hyperbolic in multiD (fixable).
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

What we have so far

@ We proposed a first-order hyperbolic reformulation for the
dispersive Euler-Korteweg equations.

@ This reformulation remains hyperbolic even in non-convex
regions of the free energy.

@ So far, no dissipation is taken into account.

@ Proposed model for Euler-Korteweg is strongly hyperbolic in
1D, weakly hyperbolic in multiD (fixable).

= Let us extend this model to the Navier-Stokes-Korteweg
system.
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system

Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Navier-Stokes-Korteweg equations

In general, the equations write

{ pt + div(pu) =0
(pu); +div(pu @ u) + VP(p) = S +

[

where p = p(x,t), u = u(x,t) and (x,t) € R? x [0, T]
The (dispersive) Korteweg stress tensor is given by:

1
K =¥ (180 + 5K (0)IV0P)

and the (viscous) Navier-Stokes stresses are given by

2
S = p div (Vu + Vvul — gdiv(u)1>
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Godunov-Peshkov-Romenski Model of continuum
mechanics

Deformation gradient:

(95137;
= [a Xj] HOY
Inverse Deformation gradient:
A _ F_l _ [aXZ]
8:1;7
Ot(A) + V(Au) + 0A _ 8—AT =0 (Solids)
A u o o™ u= olids
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Numerical methods Extension to the Navier-Stokes-Korteweg system
Conclusion A few words on hyperbolicity

Godunov-Peshkov-Romenski Model of continuum
mechanics

Deformation gradient:

(‘9:}57;
b= [a Xj] XY
Inverse Deformation gradient:

0X;
8:1;7

A:Flzl
O(A) + V(Au) + (g—‘: — (g—‘:)T> -u=0 (Solids)

T
0:(A) + V(Au) + (g—‘: - (%—‘:) ) u=2S(A) (Fluids)

T
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Numerical methods Extension to the Navier-Stokes-Korteweg system
Conclusion A few words on hyperbolicity

Hyperbolic NSK = Hyperbolic EK + Hyperbolic NS

(Black: Euler part, Red: Dispersive part, Blue: Viscous part.)

9¢(p) + div(pu) =0

O¢(pu) +div(pu®@u+ P(p)Ild — K, —0) =0
O(pn) + div(pnu) = pw

O (pw) + div (pwu — vp/B) = (af) " (1 —n/p)
(P)+V(p-u—w)+(Vxp)xu=0,

A(A) + V(Au) + (aA - (aA)T> u = —2 det(A)%/3 Adev(G)

ox  \ox T

o = —pc?Gdev(G) where G = ATA
where 9
Ko =-1pop+ (3pP-2(1-1))1d
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system

Eigenvalues - Hyperbolicity

Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

= 18 Real Eigenvalues (Linearized

Transport: \{_1g = uq,

A1—12 = U1 + Cs,
shear waves:
A13—14 = U] — Cs,
Mixed waves:
( (7,
A5 = U1 — V21 + 2o
Ne=w—VIi—Z |~

Firas Dhaouadi

around A =1,p = (p1,0,0)1)

1

5(af + a2 + a2 +a +a5)
¢Z2— (a3 + a2 + a2),

A7 =u1 +V 241+ 2o apg = \/p ( As = gcg
| As =u1 +V 21 — 2y \aazﬁj ag 5%7 a, = %p%
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Eigenvalues - Hyperbolicity

= 18 Real Eigenvalues (Linearized around A =1, p = (p1,0,0)%)

Transport: \{_19 =u;, =-Full basis of 10 eigenvectors !

Al1-12 = U1 + Cs,
shear waves:
A13—14 = U] — Cs,

Mixed waves:

(1002 a2 A2 2 2
()\15:u1— AR 21—2(a0—|—a8+a7—|—aa+a5),
Uy — 241 — 4o Z2:\/Z12—a%(a(2)+aa+ag),

p
—_
(@)

I

M7 =ul +VZ21+ Zs ag =/ pW"(p), as= %cg
| As =u1 +V 21 — 2y \aazﬁj ag = 5%7 a, = %p%
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Extension to the Navier-Stokes-Korteweg system
A few words on hyperbolicity

Scaling of relaxations

Representative characteristic velocities

y

AMs = u1 —VZ1 + 22 (21 = 5(ag + ag + a5 + ag + af),
S PN - P )
=u1 +Z1+ Zy ag = /pW"(p), as=/5¢2
(Ais = w1 +VZ1 — 22 to=-"o ag= /2, ay= /103

>~
—_
~

|

The different relaxation contributions scale as

ale 2 7 2 .2
o 9

ap ~ —
o P By’
To keep the contributions at the same order of magnitude, we can
take for example

1
B =ya, Cs:ﬁ
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system Hyperbolic reformulation of the Euler-Korteweg system
Numerical methods Extension to the Navier-Stokes-Korteweg system
Conclusion A few words on hyperbolicity

Dispersion relation

10% 107 ¢
i . 10°L
2 107} 1 ‘
= [ n
i3} g
e £ 10°;
> I > i
5100 :
'i [ < 101 3

1 C il C il L 101 L L N L
1 102 10 106 10t 10 10° 107 10°
wavenumber k[—] wavenumber k[—]

Figure 2: Plot of the phase velocity (left) and the decay rate for several
values of « along their counterparts for the Navier-Stokes-Korteweg
system. The model parameters are as follows v = 1073, ;1 = 10~ and
p=1.8
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Curl-free constraint

We propose two methods to treat the curl-free constraint :

@ ADER-DG + GLM curl-cleaning : Introduce artificial 'cleaning
field’ to transport the curl errors away
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Curl-free constraint

We propose two methods to treat the curl-free constraint :

@ ADER-DG + GLM curl-cleaning : Introduce artificial 'cleaning
field’ to transport the curl errors away

@ Exactly curl-free method based on FV : Provide a specific
discretization based on staggered grid allowing to conserve the
discrete curl-free constraint by construction.
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Conclusion Some numerical results

GLM curl cleaning [Munz et al., 2000]

Black: Euler, Red: Dispersive, Blue: Viscous, Green: Curl Cleaning

Oi(p) + div(pu) =0
O¢(pu) + div (pu @ u + (pW'(p) — W(p))Id = K, —0) =0
O¢(pn) + div(pnu) = pw

O (pw) + div (pwu — %p) — oziﬁ (1 _ g)

ou\’ op
pt—Vw+|— | p+|=—|u+2a Vxy=0
0x 0x

T
wt—i—(a—w) u—ac\/§V><p:O
0x 0

Ai(A) + V(Au) + (aA - (8A) ) 1= =2 det(A)*/? Adev(G)

aox  \ 0x T

Y = (Y1,19,13)1 : Curl cleaning field.
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Thermodynamically compatible curl cleaning

The total energy for our system, accounting for the cleaning
contribution is given by

P12 P 2 Y2, 1 2, B 9 P2
E = 5‘11‘ —|—W(p)—|—108d6VG : deVG+§\p\ —f—gp(p—n) —|—§,O’LU +§"l,b‘ .
Accounting for the GLM curl cleaning modifications, an additional
scalar balance law for the total energy can be obtained as a
consequence of the governing equations and which writes as

det(A)®/?

OE+V-(FE-u—T -u—~ywp+vb. ¥ x p) = —3 5
prc2

EA €A

where T=Y + K - P -1
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Brief summary of the numerical method

We are interested in general hyperbolic equations of the form

£ V-F(U)+B(U)- VU = S(U)
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Brief summary of the numerical method

We are interested in general hyperbolic equations of the form

%—U +V . F(U)+B(U)- VU = S(U).

@ We use a one-step fully explicit ADER-DG scheme, based on a
weak formulation of the PDE in space-time

tn/ﬂ/% <—+V (U)+B(U)-VU) dQ dt = t[lgpk (S(U)) d dt.
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Brief summary of the numerical method

We are interested in general hyperbolic equations of the form

%—U +V . F(U)+B(U)- VU = S(U).

@ We use a one-step fully explicit ADER-DG scheme, based on a
weak formulation of the PDE in space-time

tn/ﬁ/% (—+V (U)+B(U)-VU> dQ dt = tn/lwk (S(U)) dQ dt.

@ A posteriori Weno limiting (MOOD approach) is considered.
@ We use the Rusanov solver for the conservative fluxes.

@ Path-conservative method for non-conservative terms.

@ Mesh: Uniform cartesian Grid.
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

1D Traveling wave solutions for original NSK

1D NSK system reduces to:
Ot (p) + Oz(pu) =0

4
Ot (pu) + 05 (pu* + p(p)) = S Hlaz + VPPrzs

Traveling wave assumption: p(x,t) = p(x — st), u(x,t) = u(x — st)

( p/// _ i
< AP

u = (s—u)—
\ P

which we solve as a Cauchy problem with a prescribed initial
condition pg = 1.8, pf = =107, pf =0, ug = 0
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Viscous TW solution

1.8 Time: 0.000000

1.7-

rho

1.6-

1.5

0 1 2 3

X

Viscous shock traveling wave solution to the original NSK (Obtained with
a P,P, ADER-DG scheme + WENO3 subcell limiting on a grid with 512
cells with v = 0.001 ,x = 0.2, @ = 0.001, 8 = 0.00001)
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Oscillatory TW solution

181 Time: 0.000000
1.7+
1.6-
£
1.5
1.4
0 1 2 3 4 5 6 7 8
X

Dispersive traveling wave solution to the original NSK (Obtained with a
P,P; ADER-DG scheme + WENQO3 subcell limiting on a grid with 512
cells with v = 0.001 ,x = 0.0075, o = 0.001, 8 = 0.00001)
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Oscillatory TW solution

T w T
numerical —

exact - —-
1.8 -

1.7 8

1.6 | .

1.5 F .

1.4 | .

13 ! ! ! ! ! ! !
4 4.5 5) 9.9 6 6.5 7 7.5 P

Superimposed numerical solution and exact solution of original model at
t=4. (Obtained with a P,P; ADER-DG scheme + WENO3 subcell
limiting on a grid with 512 cells with v = 0.001 ,u = 0.0075, ¢s = 10,
a = 0.001, 8 = 0.00001)
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

2D Ostwald Ripening

20 Bubbles result (Obtained with a P3 P; ADER-DG scheme + Periodic
boundary conditions + WENQO3 subcell limiting on a 288 x 288 grid with
v =0.0002 ,u = 0.01, ¢s = 10, « = 0.001, S = 0.00001)
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Hyperbolic reformulation of the Navier-Stokes-Korteweg system ADER-DG + GLM curl-cleaning

Numerical methods Exactly curl-free numerical scheme
Conclusion Some numerical results
Curl errors

101% 10° ¢

ol b e it
T R T
= o =0l ,}L M i L
e WW/\ i WW Ay i) R W**WWWM 4‘“‘W”LMVWW’M‘W LJMMMW;@
g2l | ] @ 71% | :

e el e

107 0 ‘2 ‘4 ‘6 c ‘8 10 107 0 ‘2 ‘4 ‘6 C ‘8 10

t[-] t[-]

Comparison of the time evolution of the curl errors for two simulations
with cleaning (blue line) and without cleaning (orange line).
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Exactly-curl free numerical scheme

A set of classical conservation laws:

9 (p) + div(pu) =0
O(pu) +div(pu®@u+ P(p)ld — K, —0) =0
O (pm) + div(pnu) = pw
By(pw) +div (pwu —yp/B) = (af) ' (1 —n/p)
A set of potentially curl constrained vectors:
9(p) +V({P-u—w)+(Vxp)xu=0,
1
8t(A1) -+ V(Al . 11) + (V X Al) X Ua= —;Sl
1
81;(A2) + V(AQ . U.) + (V X AQ) Xu= _;SQ
1
8t(A3) -+ V(Ag . 11) -+ (V X A3) Xu= —;83

Firas Dhaouadi DroplT seminar, March 2024 34 /42



ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Exactly-curl free numerical scheme

A set of classical conservation laws: MUSCL-Hancock FV scheme

9 (p) + div(pu) =0
O(pu) +div(pu®@u+ P(p)ld — K, —0) =0
O (pm) + div(pnu) = pw
By(pw) +div (pwu —yp/B) = (af) ' (1 —n/p)
A set of potentially curl constrained vectors:
9(p) +V({P-u—w)+(Vxp)xu=0,
1
(9t(A1) + V(Al . 11) + (V X Al) X Ua= —;Sl
1
81;(A2) + V(AQ . U.) + (V X AQ) Xu= _;SQ
1
815(A3) -+ V(Ag . 11) + (V X Ag) Xu= —;83
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Exactly-curl free numerical scheme

A set of classical conservation laws: MUSCL-Hancock FV scheme

9 (p) + div(pu) =0
O(pu) +div(pu®@u+ P(p)ld — K, —0) =0
A (pm) + div(pnu) = pw
By(pw) +div (pwu — yp/B) = (af) ™ (1 = n/p)
A set of potentially curl constrained vectors: VIP Treatment
9(p) +VPpru—w)+(Vxp)xu=0,
1
(9t(A1) + V(Al . 11) + (V X Al) X Ua= —;Sl
1
at(Az) + V(AQ . U.) + (V X AQ) Xu= _;SQ
1
8t(A3) -+ V(Ag . 11) + (V X Ag) Xu= —;83
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Exactly curl-free scheme: Staggered Grid

4 d d &
A, and p;
n u u in cell vertices
yq-i—l - ? T T
Yq n u '\
o | | D (p, pus, p, pw)
73 in cell centers
u | '/
B \§ T
:pr_% [E‘p $p+%

Figure 3: Schematic of the computational domain featuring the grid
points and the staggered dual grid points. Red squares are barycenters
and blue circles are the vertexes of the computational cells.
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Exactly curl-free scheme: Compatible gradient stencil

-4 d \ .
77 5 s ( +1’ P )
. faEn 17P_+Tl o (Oh )Pz ats = Lo — o™
Y, 1l —¢ @ ' @ : \
It 3 i : +1 ppHLatl _ ppiatl
Yy S B )
! . Mp,q p.+1,q < 2 Az
Ygo—3 ¢ ¢ ¢ T (ah¢)p+%,q+% — l(fbp’q“ — o
Y 2 Ay
|| || | ]
1 ¢p+1,q+1 _ ¢p+1,q
+_ .
5 xp?_% z, %L% T \ 2 Ay

Figure 4: Stencil of the gradient field computed in every corner
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Exactly curl-free scheme: Compatible curl stencil

4 d Iy .
|| || ||
(Vo) | s (Vn)h
Yg+i ¢ PTodro & pto.afs
Yq m T m n
yq_% _Q(V )h h T
Mp-3.4-14 K
|| || ||
- T

Tp—3 Tp Tptg

Figure 5: Stencil of the curl operator computed in every cell-center
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Compatible discrete curl-operator

Based on this corner gradient, one can now define a compatible
discrete curl operator such that (V" x V"¢)P4 . e, is given by

(33¢)p+%aq+% _ (55¢)p+%,q—% . (33¢)p—%,q+% — (hp)P3I3

Y
_(Ghgpratta — (Dhgyratts (Ghg)PTaeT — (Ghg) 20
2Ax 2Ax '

It is straightforward to prove that

V' x Vi =0

Firas Dhaouadi DroplT seminar, March 2024 36 /42



Hyperbolic reformulation of the Navier-Stokes-Korteweg system ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Conclusion Some numerical results

Update formulas (A = min(Ax, Ay))

@ For the conserved variables p, u, pn, pw:
= Classical MUSCL-Hancock scheme.
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Update formulas (h = min(Az, Ay))

@ For the conserved variables p, u, pn, pw:
= Classical MUSCL-Hancock scheme.
@ For the curl-free vector p

pty.atzntl _ ptgatgn

1 1
Py = Py At VZ (pju; — w)p+2,q+2,n
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ADER-DG + GLM curl-cleaning
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Some numerical results

Update formulas (h = min(Az, Ay))

@ For the conserved variables p, u, pn, pw:
= Classical MUSCL-Hancock scheme.
@ For the curl-free vector p

p+3.q+3.n+1 p+3.q+35.n h wah
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@ Lastly, for A
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ADER-DG + GLM curl-cleaning
Numerical methods Exactly curl-free numerical scheme
Some numerical results

Near equilibrium bubble: density field
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Figure 6: Results are shown for t = 2 on a 512 x 512 grid. With
vy=210"% a=10"2, B=107% u=10"2,¢c, = 10. The
computational domain is 2. = [—0.25,0.25] x [—0.25,0.25].
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Near equilibrium bubble: gradient field
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Figure 7: Results are shown for t = 2 on a 512 x 512 grid. With
vy=210"% a=10"2, B=107% u=10"2,¢c, = 10. The
computational domain is 2. = [—0.25,0.25] x [—0.25,0.25].
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Near equilibrium bubble: Discrete curl error over time
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Figure 8: Time-evolution of the L; norm of the discrete curl errors on
different mesh sizes.
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2D Ostwald Ripening

0.7

Figure 9: Values used here are p; = 1.8, p, = 0.3, v = 2.10~ %,

a =102 B=10""2, ¢, = 10 and an effective viscosity of ;1 = 1072.
The total domain is 2 = [-0.6,40.6] x [—0.6,40.6] discretized over a
4096 x 4096 uniform grid with periodic boundary conditions.
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Conclusion

Conclusion and Perspectives

Conclusion

@ We conceived a hyperbolic relaxation model to the
Navier-Stokes-Korteweg equations.

@ Both numerical schemes allowed for satisfactory results.

@ Some numerical results blow up in finite time if a curl-free
discretization is not used
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Conclusion and Perspectives

Conclusion

@ We conceived a hyperbolic relaxation model to the
Navier-Stokes-Korteweg equations.

@ Both numerical schemes allowed for satisfactory results.

@ Some numerical results blow up in finite time if a curl-free
discretization is not used

Perspectives

@ Extension to non-isothermal flows (by using a hyperbolic heat
transfer model [3]).

@ Splitting of the fluxes for semi-implicit discretization
@ Higher-order extension of the scheme
@ Investigation of Laplace jumps... etc

@ Study of convergence towards original model
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Conclusion

Thank you for your attention |
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Conclusion

Invitation to ProHyp 2024

r|I Trento,
yp 202

37 International workshop on Perspectlves on
Multiphase Fluid Dynamics,Continuum Mechanics
and Hyperbolic Balance Laws

o 22 to 26 Apr|I 2024, (In 1.5 months)

@ @ Trento, in Hotel & Ristorante Villa Madruzzo
e @ www.unitn.it/prohyp2024

@ Contact email: prohyp2024.dicam@unitn.it

We will be happy to welcome you!
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