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Abstract

We present a family of relaxation models for thin films flows where both viscosity and surface tension
effects are inherent. In a first step, a first-order hyperbolic approximation to the dissipationless part of
the system is presented. The method is based on an augmented Lagrangian approach, where a classical
penalty method is used and high-order derivatives in the Lagrangian are promoted to new independent
variables, for which hyperbolic closure equations are sought. Then, we show that the viscous terms can
be treated either by plugging them directly to the obtained system, making it of the hyperbolic-parabolic
type or by casting them into an approximate algebraic source term that is asymptotically equivalent to the
former formulation. Finally, the extension of the method to a classical nonlinear surface tension model is
also presented. Numerical results, for all the proposed models are shown and compared with experimental
results and reference solutions.
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1. Introduction

Thin films are ubiquitous in nature as well as in the modern life. Rain water flowing on windows or
on car glass, develop patterns that are not only a sight to behold for the average observer, but also a topic
of substantial interest for researchers in the last decades. In this context, the study of thin film flows aims
mainly to provide equations which best describe the patterns and wavy motion that emerge in such fluids,
which are too regular to be considered artifacts. However, as is generally the case in continuum mechanics,
there is very often a compromise between the accuracy of a given model, its compatibility with the principles
of physics and the ease of its resolution. For instance, a direct numerical simulation of the Navier-Stokes
equations down to the smallest scales is extremely costly. This has motivated the development of a rich
literature of approximate specific models, addressed to particular flow regimes with custom assumptions,
cutting down computational costs and avoiding unnecessary complications when uncalled for.

For thin films flowing down an inclined plane, the first successful attempt to derive a consistent one-
equation model was done by Benney [1]. The equation, obtained through an asymptotic expansion of
the Navier-Stokes equations, is however known to have finite-time blow-ups. Since then, at least two-
equations models have been sought. The earliest model can be traced back to Shkadov[2], motivated by the
experimental results of Kapitza (Father & son) [3, 4]. Shkadov’s model, compared to Benney’s equation,
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does not have finite-time blow-ups and its validity extends to larger Reynolds numbers. Yet, it is not
consistent with energy conservation. This inspired the development of several consistent two-equations
models, many of which were analyzed and compared in [5], see also the references therein. It is worthy
of note that recent advances are also considering consistent three-equations models, see for example [6]
where an evolution equation for enstrophy (integral of the vorticity squared), was considered and shown to
perform better than its two-equations counterpart.

In the current work, we do not propose a new model for thin films with surface tension, but we rather
suggest an approach that approximates a certain class of existing models via a set of first-order hyperbolic
equations, that are then easier to address from the numerical point of view. The idea of approximating
PDEs by means of hyperbolic equations is becoming more of a trend in the recent years[7–12] . One of the
main reasons is the rich literature of numerical methods that are being developed and optimized for first-
order hyperbolic PDEs, allowing to solve the equations with high accuracy in reasonable amounts of time.
The method we apply here, so-called augmented Lagrangian approach, was introduced in [13] for the Serre-
Green-Naghdi equations, then successfully extended to the defocusing nonlinear Schrödinger equation [14].
The current paper, follows the same philosophy, as both thin films equations and the Schrödinger equation,
written under Madelung variables[15], fall into the same broader category of Euler-Korteweg equations.
Since the times of Van der Waals [16] and Lord Rayleigh [17], this system of equations has been the
subject of several contributions, out of which a non-exhaustive selection is recalled here [18–27]. In the
context of our approach, the equations are still derived from a variational principle and admit an additional
scalar conservation equation for the corresponding total energy. The approach is shown to work even in
the presence of inherent dissipative terms. We show in particular that one can make use of Rayleigh’s
dissipation functions to cast parabolic viscous terms into algebraic approximations, thus conserving a fully
hyperbolic structure even in this case.

This paper is organized as follows. Section 1 recalls the general structure of the systems we are con-
cerned about. Details on how the augmented Lagrangian method works are then given, supported by a
general proof of hyperbolicity of the thus obtained equations. Section 2 lays out the setting and the specific
details of the thin films model, which will serve as a basis for the numerical tests. Two methods on how
to add the parabolic viscous term are given therein followed by a comparison of the stability properties of
both the augmented model and the original one. Section 3 provides all the necessary details of the finite
volume numerical method, followed by a set of test cases for the Liu & Gollub’s experiment. Comparisons
with the experimental results are provided and a comparison of the different approaches for viscosity are
also shown. A test case for a nonlinear surface tension formulation is presented at the end. Additional
theoretical developments are included in the appendixes A to C, at the end of this paper.

2. Augmented Lagrangian framework

2.1. Reference system
The approach we present here concerns any shallow water system in which surface tension effects are

inherent. Generally, we are considering systems that can be derived from a Lagrangian of the form

L =

∫
Ωt

(
1
2

h|u|2 − f (h) −
σ

2ρ
|∇h|2

)
dΩ. (1)

Here, h = h(x, t) > 0 is the fluid depth and u(x, t) is the velocity field. f (h) is an arbitrary function of the
fluid depth, assumed convex and positive, σ is the surface tension coefficient and ρ is the fluid density. The
corresponding Euler-Lagrange equations under the mass conservation constraint

∂th + ∇ · (hu) = 0 (2)

yield the momentum balance equation

∂t(hu) + ∇ · (hu ⊗ u) + ∇P = ∇ · (K). (3)
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where P is the hydrostatic pressure and K is the Korteweg stress tensor, both given by

P = h f ′(h) − f (h), K =
(
σ

2ρ
|∇h|2 +

σ

ρ
h∆h

)
I −

σ

ρ
∇h ⊗ ∇h. (4)

Trivial calculus shows that ∇ · (K) reduces in this particular case to σ
ρ

h∇(∆h), so that the Euler-Korteweg
system of shallow water equations writes in its simplest form

∂t(h) + ∇ · (hu) = 0 (5a)

∂t(hu) + ∇ · (hu ⊗ u) + ∇P =
σ

ρ
h∇(∆h). (5b)

2.2. Augmented Lagrangian approach
The approach that we recall here finds its foundation in [14], in which more thorough details on the

calculus of variations are given. Consider a new variable, say η(x, t) that is independent from the continuum.
The idea is to introduce a relaxation in such a way that η tends towards h in the stiff relaxation limit so that
we can use ∇η instead of ∇h in the surface tension term. To that end, let us introduce a new Lagrangian

L =

∫
Ωt

(
1
2

h|u|2 − f (h) −
σ

2ρ
|∇η|2 −

1
2αh

(h − η)2
)

dΩ (6)

where α > 0 is a vanishing parameter. This new Lagrangian is non-other that the one introduced in (1)
where ∇h was substituted by ∇η, and a classical penalty term was added to ensure that the difference (h−η)
vanishes in the limit α→ 0. One can see that the penalty coefficient is chosen to depend on the fluid depth
h. This particular choice follows the discussion in [13] for the augmented Serre-Green-Naghdi equations,
where it is shown that more trivial choices might result later in the loss of hyperbolicity or the cancellation
of dispersive effects. With the introduction of the new independent degree of freedom η, the principle of
stationary action applied to the Lagrangian (6) yields an additional Euler-Lagrange equation accounting for
its variations:

∂t(h) + ∇ · (hu) = 0 (7a)

∂t(hu) + ∇ ·
(
hu ⊗ u +

(
h f (′h) − f (h) −

σ

2ρ
|∇η|2 +

η

α

(
1 −

η

h

))
Id +

σ

ρ
∇η ⊗ ∇η

)
= 0 (7b)

−
σ

ρ
∆η =

1
α

(
1 −

η

h

)
. (7c)

Equation (7c) shows that for sufficiently smooth solutions, η → h in the stiff limit. Besides, we can show
that this system of equations is consistent with the reference Euler-Korteweg equations (5b) in the limit
α → 0. In fact, it suffices to replace the term η

α

(
1 − η

h

)
in the momentum equation flux accordingly to

equation (7c) to recover a more insightful formulation that writes:

∂t(h) + ∇ · (hu) = 0 (8a)
∂t(hu) + ∇ · (hu ⊗ u) + ∇P = ∇ · (K1). (8b)

η = h + α
σ

ρ
h∆η (8c)

where K1 is given by

K1 =

(
σ

2ρ
|∇η|2 +

σ

ρ
η∆η

)
I −

σ

ρ
∇η ⊗ ∇η. (9)

Note that K1 has exactly the same expression as the Korteweg stress tensor K, only with h substituted by
η. Furthermore, cast into this form, α no longer appears in the momentum equation. It only controls how
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close η is to ρ through equation (8c). The latter, however, includes η on both sides of the equality sign,
but can still be rearranged into a formal asymptotic expansion of η in powers of α with coefficients only
depending on h up to leading order. This can be achieved by applying the Laplace operator to equation (8c)
and repeatedly replacing ∆η up to any given order to obtain

η = h + α
σ

ρ
h∆h + α2σ

2

ρ2 h∆(h∆h) + O(α3). (10)

In the limit α → 0 one obtains η → h by virtue of the latter expansion. Consequently K1 → K and we
recover the original Euler-Korteweg equations, thus proving consistency of our system. However, up to this
point, system of equations (8) does not seem to provide any easier formulation compared to the reference
equations. Indeed, it bears close resemblance to the latter with the addition of a supplementary steady-state
constraint which reduces the PDE order but does not make it any simpler, if not more complex. In an attempt
to remedy to this complication, the idea is then to apply a second relaxation to the obtained constraint in
order to cast it into a time-evolution equation. This can be carried out by further altering the Lagrangian (6)
in the following way

L =

∫
Ωt

(
1
2

h|u|2 − f (h) −
σ

2ρ
|∇η|2 −

1
2αh

(h − η)2 +
1
2
βhη̇2

)
dΩ (11)

where an additional inertial term is added and β is a vanishing parameter governing the new relaxation.
Given the structure of the modification, changes will only affect the constraint (7c) which now writes as a
conservation law with a stiff source term:

∂t(hη̇) + ∇ ·
(
hη̇u −

σ

βρ
∇η

)
=

1
αβ

(
1 −

η

h

)
. (12)

It only remains to perform an order reduction of the system, by appointing new independent variables
p = ∇η and w = η̇ and seeking suitable closure equations for the remaining degrees of freedom. These are
obtained simply by writing the definition of w, which yields an evolution equation for η

∂t(η) + u · ∇η = w, (13)

and then applying the gradient operator to both sides of the equality to obtain an evolution equation for p

∂t(p) + ∇(p · u − w) = 0. (14)

Thus, putting the equations altogether permits to obtain a closed set of conservation laws constituting the
so-called augmented system of equations

∂t(h) + ∇ · (hu) = 0 (15a)
∂t(hu) + ∇ · (hu ⊗ u) + ∇P = ∇ · (K2). (15b)
∂t(hη) + ∇ · (hηu) = hw (15c)

∂t(hw) + ∇ ·
(
hwu −

σ

βρ
p
)
=

1
αβ

(
1 −

η

h

)
(15d)

∂t(p) + ∇(p · u − w) = 0, (15e)

with

K2 =

(
σ

2ρ
|p|2 −

η

α

(
1 −

η

h

))
Id −

σ

ρ
p ⊗ p. (16)

One can derive an additional conservation law for the total energy

E =
1
2

h|u|2 + f (h) +
σ

2ρ
|p|2 +

1
2αh

(h − η)2 +
1
2
βhw2, (17)
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by summing all the equations of system (15), each multiplied by the corresponding entropic variable to
obtain

∂t(E) + ∇ ·
(
Eu + (PId −K2) u −

σ

ρ
wp

)
= 0. (18)

2.3. Hyperbolicity of the augmented system
In one dimension of space, system of equations (15e) can be cast into the quasilinear form

∂t(Q) + A(Q)∂xQ = S(Q) (19)

where Q is the vector of primitive variables, A = A(Q) is the jacobian matrix of the flux, and S = S(Q) is
the vector of source terms, all of which are given by

A =



u h 0 0 0
f ′′(h) + η2

αh3 u 0 σp
ρh

1
α

(
1 − 2η

h

)
0 0 u − σ

βρh 0
0 p −1 u 0
0 0 0 0 u


, Q =


h
u
w
p
η

 , S =


0
0

1
αβh

(
1 − η

h

)
0
w


. (20)

A admits 5 eigenvalues that can be expressed as follows :

ξ =


u

u +
√
ψ1 + ψ2

u +
√
ψ1 − ψ2

u −
√
ψ1 + ψ2

u −
√
ψ1 − ψ2

 with



ψ1 =
1
2 (a2 + a2

σ + a2
α + a2

β)

ψ2 =
1
2

√
(a2 + a2

σ + a2
α − a2

β)
2 + 4a2

βa
2
σ

a =
√

h f ′′(h), aσ =
√
σ

ρh
p2

aα =
η

h
√
α
, aβ =

√
σ

βρh

(21)

Here a is the adiabatic sound speed of the hyperbolic part of the Euler-Korteweg system (5b), aσ is the speed
of propagation of waves of capillary nature, aα and aβ are the fast wave speeds induced by the relaxation
procedure. We will refer to them as the speed of first and second relaxation, respectively. The difference
ψ1 − ψ2 can be shown positive since

ψ2 =

√
ψ2

1 − a2
β(a

2 + a2
α) < ψ1, (22)

implying that the 5 eigenvalues are real. If ψ2 , 0, then the system is strictly hyperbolic. Nevertheless, a full
basis of 5 linearly independent right eigenvectors of the matrix A can still be computed. They are written
as the columns of the following matrix, given from left to right in the same order as their corresponding
eigenvalues:

Λ =



−
h−2η

α(ψ1−ψ3) −
h(ψ3+ψ2)
ψ1−ψ3

−
h(ψ3+ψ2)
ψ1−ψ3

h(ψ2−ψ3)
p(ψ1−ψ3)

h(ψ2−ψ3)
p(ψ1−ψ3)

0 ψ4+ψ2√
ψ1−ψ2

−
ψ4+ψ2√
ψ1−ψ2

−
ψ2−ψ4

p
√
ψ1+ψ2

ψ2−ψ4

p
√
ψ1+ψ2

0 (ψ1+ψ4)p
√
ψ1−ψ2

−
(ψ1+ψ4)p
√
ψ1−ψ2

ψ1+ψ4√
ψ1+ψ2

−
ψ1+ψ4√
ψ1+ψ2

0 p p 1 1
1 0 0 0 0


, det(Λ) =

16haβψ2
2

(a2 + a2
α)

3
2

> 0 (23)

where ψ3 and ψ4 are functions of the wave speeds given by

ψ3 =
1
2

(a2
β + a2

σ − a2 − a2
α), ψ4 =

1
2

(a2
β − a2

σ − a2 − a2
α). (24)
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Now, in the case where ψ2 = 0, the system loses strict hyperbolicity as some eigenvalues coincide with one
another. This occurs when both of the following conditions are met simultaneously:

p = 0, (25a)

h f ′′(h) +
η2

αh2 =
σ

βρh
(25b)

Even in this case, we still obtain a full set of linearly independent right eigenvectors and the eigensystem of
A writes

ξ =


u

u +
√
ψ1

u +
√
ψ1

u −
√
ψ1

u −
√
ψ1

 , Λ =


−

h−2η
αa2

β

0 h
aβ

0 − h
aβ

0 0 1 0 1
0 −aβ 0 aβ 0
0 1 0 1 0
1 0 0 0 0


. (26)

Thus, system of equations (19) is unconditionally hyperbolic. The analysis in many dimensions of space
is out of the scope of this work. Nevertheless, it is important to point out that system of equations (15),
written as is, is not strongly hyperbolic in the multi-dimensional case. It needs to be cast into a Galilean
invariant form and supplemented by an additional evolution equation that enforces the curl-free constraint at
the discrete level, imposed by definition on the vector p = ∇η. The procedure, called Generalized Lagrange
multiplier curl-cleaning, turns out to also restore the strong hyperbolicity of the augmented system [28].

2.4. Case of nonlinear surface tension terms
In most of the models considering thin film flows with surface tension, capillary energy is taken quadratic

in |∇h|. More rigorous formulations consider a nonlinear term accounting for capillary energy that reads

ecap =
σ

ρ

( √
1 + |∇h|2 − 1

)
, (27)

from which, the classical quadratic formulation can be obtained by expanding in series of |∇h| and keeping
the leading order terms. While this approximation is generally satisfactory, it becomes less reliable in the
case where large gradients of fluid height are involved. Thus, it seems important to address such a case,
especially that in the framework of the augmented Lagrangian approach, no additional efforts are to be
invested. Indeed, the augmented system energy writes in this case:

E = h
|u|2

2
+ f (h) +

σ

ρ

(√
1 + |p|2 − 1

)
+

1
αh

(h − η)2 +
1
2
βhw2 (28)

Being in the same setting as before, the modification of capillary energy only affects equations (15b) and
(15d) which now read:

∂t(hu) + ∇ · (hu ⊗ u) + ∇P = ∇ · (K′2) (29a)

∂t(hw) + ∇ ·

hwu −
σ

βρ

p√
1 + |p|2

 = 1
αβ

(
1 −

η

h

)
(29b)

where K′2 is given by

K′2 =
(
σ

ρ

√
1 + |p|2 −

η

α

(
1 −

η

h

))
Id −

σ

ρ

p ⊗ p√
1 + |p|2

. (30)

In one dimension of space, the eigenstructure of the system of equations is identical to (21), with minor
changes in aσ and aβ which in this case write

aσ =

√
σp2

ρh(1 + p2)3/4 , aβ =
√

σ

βρh(1 + p2)3/4 . (31)

The system is thus hyperbolic by virtue of the same analysis provided in the previous section.
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3. Application to thin film flows with capillarity

3.1. Reference model, setting and notations

We consider a thin film that flows over an inclined horizontal plate under the effects of gravity:

x

u(x,z,t)

h(x,t)

g

z

O

θ

L

~

~ ~ ~ ~

~

~ ~

~

Figure 1: Schematic of a flowing thin film over an inclined horizontal plate with the notations used in this section.

Here, the ’tilde’ infers that the associated quantity is dimensioned. h̃(x̃, t̃) refers to the fluid height and
ũ(x̃, z̃, t̃) is the local velocity. The x̃ and z̃ respectively denote the directions parallel and normal to the plane.
The transverse direction ỹ is neglected, as the applications considered here exhibit mainly two-dimensional
dynamics. The angle θ is the constant inclination of the plate and g is the acceleration of gravity. The typical
distance in the x̃ direction will be denoted by L. For periodic waves, this refers to the wavelength. In the
long wave approximation, the ratio ε between the typical depth and wavelength is assumed to be small.

In order to obtain a non-dimensional form of the equations, one needs to consider some scaling of
reference. For that, let us consider the Nusselt flow solution. It corresponds to the equilibrium solution,
balancing the viscous forces and the gravity forces, resulting in a semi-parabolic velocity profileh̃(x̃, t̃) = h̃N

ũ(x̃, z̃, t̃) = ũN(z) =
g
ν

sin θz̃
(
h̃N −

z̃
2

)
.

(32)

The velocity is dependent on the fluid height and thus, in order to obtain a relevant characteristic velocity,
we can average it over the depth. For the sake of lightness, the averaged velocity will be denoted by its
uppercase equivalent:

ŨN =
1

h̃N

∫ h̃N

0
ũN(z̃)dz̃ =

gh̃2
N

3ν
sin θ (33)

Using this reference solution, we can define the Reynolds number Re, the Froude number F and the Weber
number We by

Re =
h̃NŨN

ν
, F =

ŨN√
gh̃N

, We =
ρ

σ
h̃NŨ2

N , (34)

and the long wave parameter by

ε =
h̃N

L
. (35)

Thus, this permits to obtain the dimensionless quantities

u =
ũ

ŨN
, U =

Ũ
ŨN

, h =
h̃

h̃N
, x =

x̃
L
, z =

z̃
h̃N
, t =

t̃
L

ŨN . (36)
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Under these notations, we will consider a particular two-equation model for thin film flows [29, 5, 6] and
which writes

∂th + ∂x(hU) = 0 (37a)

∂t(hU) + ∂x

(
hU2 +

2λ2

225
h5 +

cos θ
2F2 h2

)
−
ε2κ

F2 hhxxx =
1
εRe

(
λh −

3U
h

)
+

9ε
2Re

∂x(hUx), (37b)

where the dimensionless parameters λ, and κ are introduced for convenience, as in [6] and are defined by:

λ =
Re sin θ

F2 , κ =
F2

We
(38)

Equations (37) admit dissipative algebraic source terms at leading order in ε, as well as a viscous parabolic
term. The left-hand side however is conservative and can be regarded as the Euler-Lagrange equations to
the Lagrangian

L =

∫
Ωt

(
1
2

hU2 − f (h) −
ε2κ

2F2 h2
x

)
dΩ, with f (h) =

h2 cos θ
2F2 +

λ2h5

450
. (39)

This Lagrangian will serve as the basis for the hyperbolic relaxation method. Thus, the right-hand side in
the system of equations (37) will be omitted in the process and then added back only after the augmented
system of equations has been established.

3.2. Augmented model

The augmented Lagrangian in this case writes

L =

∫
Ωt

(
1
2

hU2 − f (h) −
ε2κ

2F2 η
2
x −

1
αh

(h − η)2 +
1
2
βhη̇2

)
dΩ. (40)

The corresponding Euler-Lagrange equations, taking into account the acceleration of gravity, are given by

∂t(h) + ∂x(hU) = 0 (41a)

∂t(hU) + ∂x

(
hU2 +

2λ2

225
h5 +

cos θ
2F2 h2 +

η

α

(
1 −

η

h

)
+
ε2κ

2F2 p2
)
=

λh
εRe

(41b)

∂t(hη) + ∂x(hηU) = hw (41c)

∂t(hw) + ∂x

(
hwU −

ε2κ

βF2 p
)
=

1
αβ

(
1 −

η

h

)
(41d)

∂t(p) + ∂x(pU − w) = 0 (41e)

These equations are hyperbolic and the corresponding wave speeds write

ξ =


U

U +
√
ψ1 + ψ2

U +
√
ψ1 − ψ2

U −
√
ψ1 + ψ2

U −
√
ψ1 − ψ2

 with



ψ1 =
1
2 (a2 + a2

σ + a2
α + a2

β)

ψ2 =
1
2

√
(a2 + a2

σ + a2
α − a2

β)
2 + 4a2

βa
2
σ

a =

√
h cos θ

F2 +
2λ2h4

45
, aσ =

√
κε2

hF2 p2

aα =
η

h
√
α
, aβ =

√
κε2

βhF2 .

(42)
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3.3. Appending dissipative terms
The last step is to account for the dissipative terms which were up to now disregarded. One way would

be to insert the omitted right-hand side term of the momentum equation of system (37), back into the
augmented system (41) which results in a mixed hyperbolic-parabolic PDE given by

∂t(h) + ∂x(hU) = 0 (43a)

∂t(hU) + ∂x

(
hU2 +

2λ2h5

225
+

h2 cos θ
2F2 +

η

α

(
1 −

η

h

)
+
ε2κ

2F2 p2
)
=

1
εRe

(
λh −

3U
h

)
+

9ε
2Re

∂x(h∂xU) (43b)

∂t(hη) + ∂x(hηU) = hw (43c)

∂t(hw) + ∂x

(
hwU −

ε2κ

βF2 p
)
=

1
αβ

(
1 −

η

h

)
(43d)

∂t(p) + ∂x(pU − w) = 0 (43e)

An alternative approach that maintains the hyperbolic structure of the whole system would be to include
the non-conservative forces into the Euler-Lagrange equations, in a way that is asymptotically compatible
with the parabolic vicous term 9ε

2Re∂x(h∂xU), introduced in equation (43). This can be done by using the
Rayleigh dissipation function [30], allowing us to cast friction forces into algebraic sources. In our case, an
appropriate choice of the Rayleigh function would be

R =
3u2

2hεRe
+

9εw2

4ηRe
. (44)

Deriving the Euler-Lagrange equations and including the function R permits to obtain the equations (see
Appendix B)

∂t(h) + ∂x(hU) = 0 (45a)

∂t(hU) + ∂x

(
hU2 +

2λ2

225
h5 +

cos θ
2F2 h2 +

η

α

(
1 −

η

h

)
+
ε2κ

2F2 p2
)
=

λh
εRe
−

3U
hεRe

(45b)

∂t(hη) + ∂x(hηU) = hw (45c)

∂t(hw) + ∂x

(
hwU −

ε2κ

βF2 p
)
=

1
αβ

(
1 −

η

h

)
−

9εw
2βηRe

(45d)

∂t(p) + ∂x(pU − w) = 0 (45e)

At this point, independently on the chosen formulation, we end up with a system of equations in which the
two relaxation parameters α and β appear along ε, which governs the asymptotic derivation of the original
equations (37). Thus, a possible preliminary scaling of the relaxation parameters should be such as not to
disrupt the asymptotic expansion down to the lowest order present in the equations. It can be shown (see
Appendix A), that this requirement can be met if we take

β = O(ε3). (46)

The fact that no restrictions appear on the parameter α, is because the momentum equation only involves
the latter when it comes to surface tension terms whose coefficient is quadratic in ε, thus shifting the
corresponding error to a higher order in ε. Nevertheless, the choice of α will be considered in the next part
when calibrating neutral stability curves.

3.4. Linearized stability analysis
Another important property of the model to be checked is its stability curve. If the neutral stability

curves of both systems are significantly different, then discrepancies in their respective behaviors may be

9



observed for the same frequencies. Unstable waves in the original system could become stable for the
augmented model or vice-verse. Thus, in order to avoid such an inconsistency, it is necessary to compute
the dispersion relation. This will be done for one example in order to show that stability properties are
well-approximated by the augmented Lagrangian procedure. In this example, the parabolic diffusion terms
are omitted, as they unnecessarily encumber the expressions without adding any substantial information to
the analysis. We proceed by casting the system into quasi-linear form

∂t(Q) + A(Q)∂x(Q) = S(Q) (47)

where :

Q =


h
U
η
w
p

 , A(Q) =



U h 0 0 0
cos θ
F2 +

2λ2h3

45 +
η2

αh3 U 1
α

(
1 − 2η

h

)
0 ε2κp

F2h
0 0 U 0 0
0 0 0 U − ε2κ

βF2h
0 p 0 −1 U


,S(Q) =


0

λh
εRe −

3U
εhRe

w
1
αβh

(
1 − η

h

)
0


(48)

We consider an equilibrium state Q0 = (h0, u0, h0, 0, 0)T , and look for solutions which are proportional to
ei(kx−wt). As a reference solution, we can choose the Nusselt flow solution (h0 = 1, u0 = 1). The phase
velocity cp = ω/k is then an eigenvalue of the matrix

M = A(Q0) +
i
k
∇Q(S(Q0)). (49)

In the context of our analysis, since we would like to compare neutral stability curves, we only need to look
for the critical stability line defined by Im(cp) = 0. Solving this equation yields the expression for the latter
(See Appendix C) and which writes

κk2

sinθ
+ cotgθ −

6
5

Re +
(
α
(
4β −

κ

F2

) (6
5

Re − cotgθ
)
− 4β

F2

sinθ

)
k2 = 0 (50)

This equation is consistent, in the limits α → 0 and β → 0, with the well-known stability condition of the
original equations (37)

κk2

sinθ
+ cotgθ −

6
5

Re = 0. (51)

The error terms in equation (50) are quadratic in k, implying that convergence is not uniform with respect
to the latter. This is confirmed in figure 2 where neutral stability curves for the original system and the
augmented one are compared for several values of α and β. The values which were obtained through
the asymptotic analysis show a very good agreement in terms of stability regions. Less restrictive values
of either α or β are shown to exhibit a different behavior in the sense that the instability region in these
cases is significantly wider. In terms of convergence, it is clear that for low frequencies the curves match
very well up to a certain cut-off frequency, starting from which there is a notable increase in the error of
approximation. For the range of Reynolds numbers of interest for us, we will continue with the values α = ε
and ε3 as they provide a very close approximation to the stability properties as shown in figure 2.
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Figure 2: Neutral stability curves in the (k,Re) plane for the original model (continuous blue line) and the augmented model for
various scalings of α and β with respect to ε. The parameters used here correspond to the Liu & Gollub’s experiments [31] with
θ = 6.4◦,We = 0.184, F = 0.847 and ε = 0.006.

4. Numerical simulations

4.1. Numerical method
In this part we lay out all the necessary details related to the numerical resolution of both systems (45)

and (43). While the former is of purely hyperbolic nature, the latter admits an additional parabolic term.
The idea is then to use a common finite volume method for both systems, and simply apply explicit centered
finite differences to discretize the diffusion operator that appears in the hyperbolic-parabolic formulation.
In the finite volume framework, we consider the system to solve in its conservative form

∂tU + ∂x (F(U)) = S(U). (52)

The PDE is solved on a discretization of a given domain [xL, xR] × [0,T ], denoted by

xi = xL +

(
i −

1
2

)
∆x, tn = n∆t, i ∈ [1,N], n ∈ [0, nmax], ∆x =

xR − xL

N
(53)

where xi represents the center of the ith cell. In these notations, a local space-time control volume is delim-
ited by [xi −

∆x
2 , xi +

∆x
2 ] × [tn, tn+1]. We will consider in our case a second-order accurate ARS(2,2,2)[32]

discretization of (52). The scheme is based on an Implicit-Explicit (IMEX) decomposition of the system,
that is well-adapted for stiff source terms. We recall below the corresponding Butcher tableaux [32]

0 0 0 0
γ γ 0 0
1 δ 1 − δ 0

δ 1 − δ 0

,

0 0 0 0
γ 0 γ 0
1 0 1 − γ γ

0 1 − γ γ

,


γ = 1 −

1
√

2

δ = 1 −
1

2γ

(54)

where the left table corresponds to the explicit part and the right one to the implicit part. When applied to
the conservative equation (52), with initial condition Un

i this yields the two-stage scheme

U⋆
i = Un

i + γ∆t

−Fn
i+ 1

2
− Fn

i− 1
2

∆x
+ S(U⋆

i )

 (55a)

Un+1
i = Un

i − ∆t

δFn
i+ 1

2
− Fn

i− 1
2

∆x
+ (1 − δ)

F⋆
i+ 1

2
− F⋆

i− 1
2

∆x

 + ∆t
(
(1 − γ)S (U⋆

i ) + γS (Un+1
i )

)
, (55b)
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where Fn
i+ 1

2
is an intercell flux, computed by using a classical Riemann solver. In our case we use the

Rusanov flux [33]

Fn
i+ 1

2
=

1
2

(
F(wL

i+1) + F(wR
i )

)
−

1
2

smax
i+ 1

2

(
wL

i+1 − wR
i

)
(56)

where wL
i (resp. wR

i ) is the boundary extrapolated value to the left (resp. to the right) of a piece-wise linear
reconstruction wn

i (x), obtained from Un
i through the MUSCL approach [33, 34]. For every cell, smax

i+ 1
2

is
evaluated by using

smax
i+ 1

2
= max

(
max
1≤ j≤5

(∣∣∣ξ j(UL
i+1)

∣∣∣) , max
1≤ j≤5

(∣∣∣ξ j(UR
i )

∣∣∣)) (57)

where ξ j are the eigenvalues of the flux Jacobian. In the scheme (55), the source terms are to be resolved
implicitly. This suggests the use of either root-finding algorithms (e.g. Newton-Raphson or fixed-point
iterations), or solving the algebraic equation by hand, which in this case is a feasible task. In the case where
we are numerically solving equations (43), we only need to add the discretized parabolic viscous term Dn

i
to the scheme (55) as follows

U⋆
i = Un

i + γ∆t

−Fn
i+ 1

2
− Fn

i− 1
2

∆x
+ Dn

i + S(U⋆
i )


Un+1

i = Un
i − ∆t

δFn
i+ 1

2
− Fn

i− 1
2

∆x
− δDn

i + (1 − δ)
F⋆

i+ 1
2
− F⋆

i− 1
2

∆x
− (1 − δ)D⋆

i

 + ∆t
(
(1 − γ)S (U⋆

i ) + γS (Un+1
i )

)
,

where Dn
i = (0, dn

i , 0, 0, 0)T , and dn
i is given by

dn
i =

9ε
4Re∆x2 ((hn

i + hn
i+1)(Un

i+1 − Un
i ) − (hn

i + hn
i−1)(Un

i − Un
i−1)). (59)

In this case, the scheme is stable with a CFL condition of the form

max
(
ξmax
∆t
∆x

,
9ε
Re
∆t
∆x2

)
≤ 1 (60)

4.2. Liu & Gollub’s experiment

We study here the experiments done by Liu and Gollub [31]. It consists in a two-meter long canal,
inclined with a constant angle θ, containing a thin film of an aqueous solution of glycerin (around one
millimeter). The fluid is initially at rest. At t = 0, a periodic perturbation, with an arbitrary amplitude, is
imposed at one of its boundaries. Depending on the frequency of the perturbation, the thus generated waves
have amplitudes that may decay or grow in time. The frequencies of interest in this experiment are the
unstable frequencies, for which it was observed that the wave amplitude grows until it reaches a stationary
state whose behavior is strongly dependent on the imposed frequency. An example is given in figure 3
for a frequency of 1.5Hz. The perturbation is imposed on the left boundary. One can see that the initial
oscillations grow as they propagate until a wave-train of small capillary oscillations appears in the vicinity
of the leading front which stabilizes the time evolution.
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Figure 3: Dimensionless water height as a function of space (dimensioned), in the setting of the Liu & Gollub experiment, for an
imposed frequency of 1.5Hz. (Obtained through numerical simulation). Parameters used here are : Re = 19.33, κ = 1.440.10−4,
Fr = 0.8476,θ = 6.4◦

An important feature of this experiment is that, for different imposed frequencies, the generated wave
displays significantly different features (presented in figure 4). For higher frequencies, the front and tail of
the waves become closer which hinders the development of the wave precursors and may lead to strong in-
teraction between the successive pulses. In order to simulate the experiments of Liu & Gollub, we consider
the following initial condition

h(x̃, 0) = η(x̃, 0) = U(x̃, 0) = 1, w(x̃, 0) = p(x̃, 0) = 0 (61)

which corresponds to the Nusselt flow solution. The total numerical domain expands from x̃L = 0 to
x̃R = 2m, for which the boundary conditions are prescribed as follows

At x = 0 : hn
0 = η

n
0 = 1 + 0.1 sin(2π f tn), un

0 = 1, wn
0 = 0.2π f cos(2π f tn), pn

0 = (ηn
1 − η

n
0)/∆x

At x = L : hn
N+1 = hn

N un
N+1 = un

N , ηn
N+1 = η

n
N , wn

N+1 = wn
N , pn

N+1 = pn
N

The dimensionless frequency is given by f = f̃ L/ŨN , where f̃ is the imposed dimensioned frequency. In
all the numerical tests presented hereafter for the Liu & Gollub’s experiments, we take the following values
of the model’s parameters:

Physical constants g = 9.80 m s−2 σ = 0.067 Kg s−2 ν = 6.28 × 10−6 m2 s−1 ρ = 1080 Kg m−3 θ = 6.4◦

Dimensionless Numbers Re = 19.33 F = 0.8476 We = 0.1858 ε = 6.07 × 10−3 κ = 3.866 λ = 3
Reference quantities h̃N = 1.279 mm ŨN = 94.94 mm s−1 L = 210.5 mm
Relaxation parameters α = 6.07 × 10−3 β = 2.243 × 10−7

Table 1: Summary of the model parameters’ values used in the Liu & Gollub’s experiments. The relaxation parameters are taken equal
to α = ε and β = ε3.

The numerical results are given below for both proposed formulations.
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4.2.1. Hyperbolic-parabolic model
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Figure 4: Experimental results of Liu & gollub [31] (right) along the obtained numerical results (left), for different forcing frequencies,
respectively equal to (a) : f̃1 = 1.5Hz, (b) : f̃2 = 3.0Hz and (c) : f̃ = 4.5Hz. The number of mesh points is n = 40000. Experimental
results figures are reprinted from Jun Liu and J. P. Gollub. Solitary wave dynamics of film flows. Physics of Fluids, 6(5):1702–1712,
1994., with the permission of AIP Publishing.
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Figure 5: Superimposed numerical simulation with the experimental result for f̃ = 1.5Hz.

Remark 4.1. It may seem that the value Re = 19.33 used here is in discrepancy with the one used in [31]
which is Re′ = 29. The equality Re′ = 3Re/2 is due to the fact that both Reynolds numbers are defined
with different reference velocities. In fact, we consider here as reference velocity the averaged equilibrium
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velocity over the depth ŨN , while the reference value used in [31] is the value of the velocity at the water
surface ũN(hN) = 3ŨN/2. (See equations (33) and (32) )

For the different forcing frequencies, the numerically simulated waves display similar features to the exper-
imental measures for the chosen values of α = ε and β = ε3. The agreement is qualitatively very good. One
can see on figure 5 that the amplitude and the wavelength of both the wave peak and the capillary ripples,
are approximately well recovered through the augmented model for the chosen values of α and β.

4.2.2. Fully hyperbolic model
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Figure 6: Comparison of the wave profiles for different frequencies. The blue continuous line stands for the hyperbolic-parabolic
model. The red dashed line represents the fully hyperbolic formulation. Number of mesh points is n = 10000.

As displayed in figure 6, the results of both models are in agreement. Due to the additional stiff source
term coming for the Rayleigh dissipation function, there is a phase error between both formulations. An
approximate measurement of this shift error shows that it decreases with higher frequencies. Indeed, the
values of the shift are given for the frequencies f̃1, f̃2 and f̃3 respectively by ∆x̃1 ≃ 22cm, ∆x̃2 ≃ 3.4cm
and ∆x̃3 ≃ 0. Since, we are mainly concerned with the wave profiles, this phase error is suppressed in
the previous comparison, by slightly shifting one of the numerical solutions. For reference, a comparison
where the phase shift is the clearest to observe is given on figure (7)
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Figure 7: Comparison of both numerical solutions, including the phase shift for f̃ = 1.5Hz. Number of mesh points is n = 10000.

4.3. Nonlinear surface tension model
We compare with the results obtained in [35] for a Gaussian initial data. It offers the advantage of being

one of the few tests that was compared for both linear and nonlinear surface tensions in the non-stationary
case. Thus, for the setting of this test, we consider the following Lagrangian, in dimensioned variables

L =

∫
Ωt

(
1
2

h̃Ũ2 −
1
2

gh̃2 −
σ

ρ

(√
1 + h̃2

x̃ − 1
))

dΩ (62)

to which corresponds, in augmented variables, the Lagrangian :

L =

∫
Ωt

(
1
2

h̃Ũ2 +
1
2
β̃h̃w̃2 −

1
2

gh̃2 −
σ

ρ

(√
1 + p̃2 − 1

)
+

h̃
2α̃

(
1 −

η̃

h̃

)2)
dΩ (63)

We consider the initial data

h̃(x̃, 0) = η̃(x̃, 0) = h0 + h1e
− x2

2(b/b0)2
, Ũ(x̃, 0) = 0, p̃(x̃, 0) = −

h1

(b/b0)2 x̃e
− x2

2(b/b̃0)2
, w̃(x̃, 0) = 0 (64)

where h0 is the water elevation at rest. b, b0 and h1 are parameters that define the shape of the Gaussian
deformation as can be seen in figure 8.

h0

h1

b
x

h

Figure 8: Shape of the Gaussian initial data.

Starting from the initial condition (64), we compute the time evolution of the deformation, which gen-
erates both gravity and capillary waves. For the simulation, we take a domain of L = [−50mm, 50mm]. The
numerical results, at t = 5ms, is displayed in figure 9, with both linear and nonlinear capillarity terms :
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Figure 9: Comparison of the obtained numerical results (solid lines) with the converged numerical solutions proposed in [35] (dots),
for the Gaussian initial data (64) at t = 5ms. Parameters used here are g = 9.81m.s−2, σ = 0.0728Kg.s−2, ρ = 1000Kg.m−3,
h0 = h1 = 2.725 mm, b = 1.5h1 and b0 = 4.29193. α̃ = 10−3m−2 s2 and β̃ = 10−5. Results are shown with a mesh resolution of
n = 5000 for the whole domain.

The shown results are obtained by using the same ARS(2,2,2) scheme. The c f l is set to 0.8. Unlike
what was used in [35], there is no need to adjust the c f l to be able to capture the capillary waves, as the
characteristic velocities of the model, naturally include the fast oscillations scale. The comparison shows a
perfect agreement, in terms of wave amplitude, wave frequency and wave speed. The comparison of p̃ with
h̃x̃, computed through centered finite differences is given in the next figure for both capillarity forms:
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linear capillarity : h̃x̃

Figure 10: Comparison of h̃x̃ (dashed lines) and p̃ (continuous lines) for the same values as above for both linear and nonlinear surface
tension models. The curves coincide perfectly.

This test shows that the numerical results obtained for both linear and nonlinear surface tension models
match perfectly with the converged numerical solutions of [35].This test shows that the augmented model
in this setting, approximates the original model with excellent accuracy.

4.4. Mesh and relaxation convergence study

In order to demonstrate the convergence order of the used numerical method, we provide a convergence
table (table 2) for the previous test with linearized surface tension. The reference solution in this case is
a numerical solution obtained on a very fine mesh n = 216. The table shows that the convergence rate is
indeed of second order. Figure 11 further illustrates the convergence of the solution .
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Nx ϵL2 (ρ) ϵL2 (u) ϵL2 (η) ϵL2 (p) OL2 (ρ) OL2 (u) OL2 (η) OL2 (p)

29 1.11 × 10−2 3.92 × 10−1 1.10 × 10−2 4.27 × 10−1 − − − −

210 2.69 × 10−3 9.17 × 10−2 2.71 × 10−3 1.01 × 10−1 2.04 2.09 2.02 2.07
211 5.42 × 10−4 2.26 × 10−2 5.38 × 10−4 2.12 × 10−2 2.31 2.01 2.33 2.25
212 1.18 × 10−4 5.04 × 10−3 1.32 × 10−4 4.96 × 10−3 2.19 2.16 2.02 2.09
213 2.84 × 10−5 1.31 × 10−3 3.38 × 10−5 1.26 × 10−3 2.06 1.94 1.97 1.96

Table 2: Convergence table for a Gaussian droplet breakup numerical solution, obtained by the second-order ARS (2,2,2) scheme. The
ϵL2 denote the L2 relative error and OL2 represent the corresponding convergence order.
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Figure 11: Mesh convergence test for the breakup of a gaussian droplet with linearized surface tension. Other parameters used here
are the same as in figure 9

Convergence in the relaxation parameters requires a sufficiently refined mesh, since the scheme is not
asymptotic preserving. In fact the fluxes contain stiff terms due to the relaxation and which are resolved
explicitly in time. In figure 12, we show the same numerical solution for the gaussian droplet breakup,
for several values of the relaxation parameters α̃ and β̃ on two different meshes with resolutions n = 2500
and n = 5000. While, on the latter, one can observe a convergence trend in the sense that the numerical
solution becomes independent on the choice of the penalty parameters for sufficiently stiff values, the former
shows that insufficiently resolved meshes with stiff penalty parameters might result in dispersive numerical
artifacts that pollute the numerical solution.
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Figure 12: Numerical solution at t = 5ms for the breakup of a Gaussian droplet on two different mesh resolutions of n = 2500
(left) and n = 5000 (right). The total computational domain is [−50mm, 50mm] and other parameters used here are g = 9.81m.s−2,
σ = 0.0728Kg.s−2, ρ = 1000Kg.m−3, h0 = h1 = 2.725 mm, b = 1.5h1 and b0 = 4.29193
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Conclusion

We presented in this paper a common framework for thin films flows with capillarity and viscosity,
allowing to obtain accurately approximate models with a convenient mathematical structure. The numerical
results obtained by numerically solving the proposed systems of equations, has shown good agreement
with both experimental results as well as reference numerical solutions, for both proposed formulations
of viscosity. Besides, the method was also shown to be easily applicable to other formulations of surface
tension terms that are more relevant when considered applications involve large gradients of fluid height.
However, one of the disadvantages of this approach lies in the fact that it is unable to deal with flows
involving dry or nearly dry regions. This is due to the fact that the maximum characteristic velocity tends
to infinity when the fluid depth h goes to 0. The treatment of such cases will be left to future endeavors.
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Appendix A. α and β scaling

In this part we show that the augmented model is asymptotically equivalent to the original equations,
with a suitable choice of the relaxation parameters α and β. The starting point in this analysis is the Euler-
Lagrange equation (43d). We multiply it by βη in order to obtain

η

α

(
1 −

η

h

)
= βηhẇ − η∂x

(
ε2κ

F2 p
)

This implies
η = h +

κ

F2 ε
2αh∂x p − αβh2ẇ. (A.1)

At this point, we assume that α and β are given in power laws of ε such that α = εn1 and β = εn2 where the
exponents n1, n2 ≥ 0. Under this scaling, the latter equation writes

η = h +
κ

F2 ε
2+n1 h∂x p − εn1+n2 h2ẇ. (A.2)

Substituting (A.2) in the momentum equation (43b) allows us to write

∂t(hU) + ∂x

(
hU2 +

2λ2h5

225
+

h2 cos θ
2F2

)
=

1
εRe

(
λh −

3U
h

)
+

9ε
2Re

∂x(h∂xU) +
ε2κ

F2 hhxxx

− εn2
(
h2ḣ

)
x
+ εn1+4 κ

F4 h (hxhxxx + (hxh)xxx) + o (εn2 ) + o
(
ε4+n1

)
(A.3)

Equation (A.3) is asymptotically equivalent to (43b) if the leading order error terms in ε are of order larger
than 2 i.e. n2 is larger than 2. The most straightforward choice corresponds to n2 = 3, meaning β = O(ϵ3).

Appendix B. The Rayleigh dissipation function

Given a generic Lagrangian

L =

∫
Ωt

L(q1, q̇1, q2, q̇2, ...) dΩ (B.1)
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one can include the effects of friction forces directly to the Euler Lagrange equations by writing

d
dt

(
∂L
∂q̇ j

)
−
∂L
∂q j
= Q j (B.2)

where Q j represents the non-conservative forces. In this context, it is convenient to define a scalar dissipa-
tion function R from which friction forces can be derived, similarly to how conservative forces are derived
from a potential [30]. Such a function is often taken as a quadratic function in q̇. One can then substitute
Q j in the previous equation so that it becomes

d
dt

(
∂L
∂q̇ j

)
−
∂L
∂q j
+
∂R

∂q̇ j
= 0. (B.3)

In the context of our study, we choose the Rayleigh function as

R =
3U2

2hεRe
+

9εw2

4ηRe
(B.4)

This only induces changes to the Euler-Lagrange equations

∂t(hU) + ∂x

(
hU2 +

2λ2

225
h5 +

cos θ
2F2 h2 +

η

α

(
1 −

η

h

)
+
ε2κ

2F2 p2
)
=

λh
εRe
−

3U
hεRe︸  ︷︷  ︸
−RU

(B.5a)

∂t(hw) + ∂x

(
hwU −

ε2κ

βF2 p
)
=

1
αβ

(
1 −

η

h

)
−

9εw
2βηRe︸    ︷︷    ︸
−∂wR

(B.5b)

The choice of the dissipation function is not arbitrary, as it is taken to preserve the asymptotic equivalence
of our system with the PDE (37) given in section 3.1. This can be proven as follows. First we rewrite the
term η

α

(
1 − η

h

)
η

α

(
1 −

η

h

)
= −η∂x

(
ε2κ

F2 p
)
+

9εw
2Re
+ βηhẇ. (B.6)

Under the same notation of the previous appendix, replacing the latter expression into the momentum
equation (B.5a) allows us to write

∂t(hU) + ∂x

(
hU2 +

2λ2h5

225
+

h2 cos θ
2F2

)
=

1
εRe

(
λh −

3U
h

)
− ∂x

(
9εw
2Re

)
+
ε2κ

F2 hhxxx

− εn2
(
h2ḣ

)
x
+ εn1+4 κ

F4 h (hxhxxx + (hxh)xxx) + o (εn2 ) + o
(
ε4+n1

)
Thus, by virtue of the previous analysis, this formulation is compatible with the PDE (37) as long as the term
9εw
2Re is asymptotically consistent with − 9ε

2Re h∂xU. This can be shown as follows. First, by using equation
(B.6) we can express η as a function of h then apply a material derivative to obtain

w = ḣ +
9ε1+n1

2Re
(∂t (wh/η) + u∂x (wh/η)) − εn1+n2 (∂t(h2ẇ) + u∂x(h2ẇ)) + o(ε1+n1 ). (B.7)

Plugging this expression into the previous expansion of the momentum of equation and recalling that ḣ =
−h∂xU by virtue of the mass conservation equation, we can finally write

∂t(hU) + ∂x

(
hU2 +

2λ2h5

225
+

h2 cos θ
2F2

)
=

1
εRe

(
λh −

3U
h

)
+

9ε
2Re

∂x(h∂xU) +
ε2κ

F2 hhxxx − ε
n2

(
h2ḣ

)
x

−
81

4Re2 ε
2+n1 (∂t (wh/η) + u∂x (wh/η)) + o (εn2 ) + o

(
ε2+n1

)
Thus, the asymptotic structure of the model (37) is conserved if and only if n2 > 2 and n1 > 0. We can take
for example in this case n1 = 1 and n2 = 3.
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Appendix C. Critical stability curve

We write the characteristic polynomial of the matrix M defined in equation (49), in terms of the variable
X = u0 − cp

1
αβεk3 X

(
A0 + A1X + A2X2 + A3X3 + A4X4

)
= 0 (C.1)

where the coefficients are given by

A0 =
6i
Re
+Cεk +

6iα
ReWe

k2ε2 +
1 + αC

We
k3ε3, A1 =

3i
Re
+

3iα
ReWe

k2ε2

A2 = −

(
6iα
Re

βk2 +
(
1 + βk2 + αCβk2

)
kε +

α

We
k3ε3

)
, A3 = −

3iαβk2

Re
, A4 = αβεk3

and C = cos θ
F2 +

2λ2

45 is a constant introduced only to lighten the expressions. Since we are looking for
the critical curve Im(X) = 0, this suggests that we search for nontrivial real roots of the characteristic
polynomial (C.1). Thus, we discard the root X = 0 and consider a nonzero root X ∈ R∗. Equating the real
and imaginary parts of the characteristic polynomial to zero respectively, yields the equations

X4 −

(
1
α
+C +

κ

βF2 +
1

αβk2

)
X2 +

C
β

(
κ

F2 +
1
αk2

)
+

κ

αβF2 = 0 (C.2a)

(X + 2)
(
X2 −

(
κ

βF2 +
1

αβk2

))
= 0 (C.2b)

where X must be a common root to the two polynomials. Equation (C.2b) admits three real roots

X1 = −2 ; X2,3 = ±

√
κ

βF2 +
1

αβk2 (C.3)

Substituting X2,3 in (C.2a) yields

−
1
α2β
= 0 (C.4)

which is not possible in our case. This leaves X1 as the unique possible common root. Indeed, plugging the
latter into equation (C.2a) yields

1
k2

(
κk2

F2 − 4 +C
)
+ α

(
4β −

κ

F2

)
(4 −C) − 4β = 0 (C.5)

By using the fact that λ = Re sin θ
F2 = 3, the parameter C can be reshaped into

C =
cos θ
F2 +

6Re sin θ
45F2 . (C.6)

Further development and simplifications lead to the equation of the critical stability curve

κk2

sinθ
+ cotgθ −

6
5

Re +
(
α
(
4β −

κ

F2

) (6
5

Re − cotgθ
)
− 4β

F2

sinθ

)
k2 = 0 (C.7)
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