
AN EULERIAN HYPERBOLIC MODEL FOR HEAT TRANSFER
DERIVED VIA HAMILTON’S PRINCIPLE: ANALYTICAL AND

NUMERICAL STUDY

Firas Dhaouadi∗ a, Sergey Gavrilyukb

a Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy.
bAix-Marseille University and CNRS UMR 7343 IUSTI, 5 rue Enrico Fermi, 13453 Marseille, France.

ABSTRACT

In this paper, we present a new model for heat transfer in compressible fluid flows. The model is
derived from Hamilton’s principle of stationary action in Eulerian coordinates, in a setting where
the entropy conservation is recovered as an Euler–Lagrange equation. The governing system is
shown to be hyperbolic. It is asymptotically consistent with the Euler equations for compressible
heat conducting fluids, provided the addition of suitable relaxation terms. A study of the Rankine–
Hugoniot conditions and the Clausius–Duhem inequality reveals that contact discontinuities cannot
exist while expansion waves and compression fans are possible solutions to the governing equations.
Evidence of these properties is provided on a set of numerical test cases.
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1. Introduction
The description of heat transfer processes in continuum mechanics is generally based on Fourier’s law of heat conduction
stating that the heat flux in a medium is opposite to the temperature gradient. However, one flaw in this description is
the fact that a localized perturbation in the temperature field, generates an instantaneous response, as small as it may
be, in all the medium. There have been several attempts to circumvent this shortcoming, maybe the most known of
which is the Maxwell-Cattaneo-Vernotte model of heat conduction [1–3], where the heat equation was approximated by
a hyperbolic system of evolution equations for the temperature and the heat flux. Such a coupling between the heat
processes and motion of continuum media, where the heat flux is considered as an independent variable was considered
in particular in [4–8].

In this context, we present in this paper a new model describing heat transfer in an inviscid fluid flow. The model
is derived via Hamilton’s principle of stationary action in Eulerian coordinates resulting in a first order quasilinear
system of partial differential equations. The formulation we propose finds its foundation in the works of Green &
Naghdi [6, 7] and allows to recover the entropy evolution equation as an Euler-Lagrange equation for the Hamilton
action. Under the classical assumption of the total energy convexity, the governing equations are shown to be hyperbolic.
The system admits two types of waves which we call acoustic and thermal waves. The former is analogous to the
acoustic waves of the Euler equations while the latter describes rather the heat transfer. We show for acoustic waves that
the corresponding eigenfields are genuinely nonlinear in the sense of Lax [9], while the eigenfields for thermal waves
are neither genuinely linear nor linearly degenerate. In particular, in the last case we show the existence of expansion
shocks, i.e., discontinuous fronts moving through the media for which the pressure behind the shock is lower than
the pressure ahead of it, and related compression fans as possible solutions of the governing equations. The theory of
expansion shocks was developed in the case of a scalar quasilinear conservative equation with a non-convex flux in [10]
and extended further to systems of hyperbolic equations in [11–14]. Physical applications of expansion shocks are
described and discussed for example in [15–20].

The rest of this paper is organized as follows. In section 2, we recall the classical governing equations for compressible
fluid flows accounting for heat conduction. Section 3 provides the theoretical foundation for our proposed model. It
contains details on the system Lagrangian, the governing equations, and how dissipation is added by means of the
Rayleigh dissipation function, in a way that is asymptotically compatible with the Fourier law. We also provide in
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this section a criterion for the total energy convexity and present our equations as a symmetric t-hyperbolic system
in the sense of Friedrichs. In section 4, we provide an extensive study of the model hyperbolicity by analyzing its
eigenstructure and investigating the nature of the corresponding eigenfields. We also draw a comparative analysis of
the dispersion relations of our model with the Euler system with heat conduction where we show that both models
are compatible in the low frequencies up to a certain threshold. In section 5, we prove the non-existence of contact
discontinuities for our system and we show that there are two distinct branches of the Hugoniot curve, of acoustic and
thermal natures. In particular, we use the Clausius-Duhem inequality as a selection criterion for admissible shocks and
we show that expansion shocks solutions exist in certain conditions. Section 6 lays out all the necessary details on the
implemented numerical scheme used to numerically solve the governing system of equations. Lastly, we present in
section 7 a sample of numerical tests for specific Riemann problems, confirming the theoretical findings on the nature of
solutions. The paper is supported by three appendixes which contain supplementary details. Appendix A complements
section 3 with all the necessary calculus for the model derivation through Hamilton’s principle. Appendix B gives the
proof of energy conservation in the general case, even when curl-cleaning is applied. Lastly, Appendix C contains the
proof of symmetrizability of the governing equations.

Notations

Tensor notation will be used throughout the paper. Thus, it seems of importance to briefly recall the definitions and
conventions we use here for the sake of clarity. For any λ ∈ R, u, v ∈ Rd and A ∈ Rd×d, we convene what follows. The
transpose of u shall be denoted as uT and the trace of A will be denoted as Tr(A). The identity matrix will be denoted
as I. We define the differential operators as follows

div (u) =
∂u1

∂x1
+ · · · +

∂ud

∂xd
,
∂λ

∂x
=

(
∂λ

∂x1
, · · · ,

∂λ

∂xd

)
, ∇λ =

(
∂λ

∂x

)T

=

(
∂λ

∂x1
, · · · ,

∂λ

∂xd

)T

,

∂u
∂x
=


∂u1

∂x1
· · ·

∂u1

∂xd
...

. . .
...

∂ud

∂x1
· · ·

∂ud

∂xd


, ∇u =

(
∂u
∂x

)T

=


∂u1

∂x1
· · ·

∂ud

∂x1
...

. . .
...

∂u1

∂xd
· · ·

∂ud

∂xd


.

The divergence of the second order tensor A is defined such that for every constant vector field a, we have
div (A) · a = div (Aa) ,

i.e, the divergence of the second order tensor A is the vector whose components are the divergence of each column of A.
In particular, we recall the following formulas

div(Au) = div(A) · u + Tr
(
A
∂u
∂x

)
, div(u ⊗ v) = div(u) v +

∂v
∂x

u, Tr(u ⊗ v A) = v · Au.

The Hessian matrix of λ with respect to the variables v = (v1, · · · , vn)T shall be denoted as ∇2
vλ and is the symmetric

matrix whose expression is given by

∇2
vλ =



∂2λ

∂v2
1

· · ·
∂2λ

∂v1vn
...

. . .
...

∂2λ

∂v1vn
· · ·

∂2λ

∂v2
n


.

Lastly, the material derivative, with respect to a velocity field u is defined as follows

λ̇ =
∂λ

∂t
+
∂λ

∂x
u v̇ =

∂v
∂t
+
∂v
∂x

u

2. The Euler system for compressible heat conducting fluid flows
Compressible flows of inviscid fluids in the presence of heat transfer can be described by the Euler equations supple-
mented by the Fourier heat conduction terms

∂ρ

∂t
+ div (ρu) = 0, (1a)

∂ρu
∂t
+ div (ρu ⊗ u + p(ρ, η)I) = 0, (1b)

∂E
∂t
+ div (Eu + p(ρ, η)u − K∇θ(ρ, η)) = 0. (1c)
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Applications of such a model can be found for example in [21]. In this part and for the rest of this paper, x ∈ Rd refers
to the vector of space coordinates and t ∈ R+ is the time. K is the heat conductivity assumed positive, ρ = ρ(x, t) is the
density field, u = u(x, t) is the velocity field, θ(ρ, η) is the temperature, p(ρ, η) is the pressure, and η = η(x, t) is the
specific entropy. For the sake of lightness, dependence of the variables on space and time will be assumed from now on
but omitted in the notation. Lastly, E is the total energy of the system which is expressed as

E =
1
2
ρ ||u||2 + ρε(ρ, η),

where ε(ρ, η) is the specific internal energy, which is linked to the temperature θ(ρ, η) and to the pressure p(ρ, η) via the
Gibbs identity

θdη = dε + p d
(

1
ρ

)
.

so that we have
p(ρ, η) = ρ2 ∂ε

∂ρ
, θ(ρ, η) =

∂ε

∂η
.

Equations (1) describe the conservation of mass, momentum and total energy, respectively. Furthermore, an additional
evolution equation for the entropy can be derived as a consequence of this system and which can be cast as the
Clausius-Duhem inequality

∂ρη

∂t
+ div

(
ρηu −

K
θ
∇θ

)
=

K
θ2
||∇θ||2 ≥ 0

3. Model description
3.1. Lagrangian of the system

Derivation of the Euler equations of compressible flows from Hamilton’s principle of stationary action can be found
in [22–25]. The corresponding Lagrangian can be written as

LE =

∫
Ωt

(
1
2
ρ ||u||2 − ρε(ρ, η)

)
dΩ,

where Ωt is the material domain. The momentum equation is then obtained as the Euler-Lagrange equation while the
mass and entropy conservation laws are considered as constraints. However, postulating the entropy equation as a
constraint is not necessary as it can be recovered as an Euler-Lagrange equation as well (See equation (31) in Appendix
A). Indeed, in a series of papers by Green and Naghdi [6, 7], an independent auxiliary potential ϕ(x, t) was introduced
as a thermal analogue of the kinematic variables. In particular, it is linked to the temperature by the relation

ϕ̇(x, t) = −θ(x, t) (2)

A similar idea was also used in Lagrangian coordinates in [8]. In what follows, the governing equations will be derived
in Eulerian coordinates. For this, consider the following Lagrangian

L =

∫
Ω

(
1
2
ρ ||u||2 −

1
2
α(ρ) ||∇ϕ||2 − ρε⋆(ρ, ϕ̇)

)
dΩ, (3)

where the coefficient α(ρ) is an arbitrary positive function of density. The quantity ε⋆ is the Helmholtz free energy,
which relates to the internal energy by a partial Legendre transform as follows

ε(ρ, η) = ε⋆(ρ, ϕ̇) − ηϕ̇, with η =
∂ε⋆

∂ϕ̇
.

In addition, one has
∂ε

∂ρ
=
∂ε⋆

∂ρ
,
∂ε

∂η
= −ϕ̇.

If we recall that θ = −ϕ̇ and note the specific volume by v = 1/ρ, then the internal energy verifies the Gibbs identity

θdη = dε + pdv. (4)

In order to obtain the governing system of equations, a variational principle is applied to the Lagrangian (3), submitted
to the mass conservation constraint

∂ρ

∂t
+ div (ρu) = 0. (5)

3
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By virtue of their definitions, the variations of both the density ρ and the velocity u can be linked to the kinematic
displacement of the continuum while ∇ϕ and ϕ̇ are derivatives of the thermal displacement. This suggests that two
Euler-Lagrange equations are to be obtained and which are given hereafter, respectively

∂

∂t
(ρu) + div

(
ρu ⊗ u +

(
ρ2 ∂ε

∂ρ
+

1
2

(
ρα′(ρ) − α(ρ)

)
||∇ϕ||2

)
I + α(ρ) ∇ϕ ⊗ ∇ϕ

)
= 0,

∂

∂t
(ρη) + div (ρηu + α(ρ)∇ϕ) = 0.

Details on the derivation of this system are given in Appendix A. In order to recast these equations into a first-order
quasilinear system, we can apply an order reduction by denoting j = ∇ϕ. Its evolution is obtained by applying the
gradient operator on (2) so that

∂j
∂t
+ ∇ (j · u + θ) = 0.

It is worthy of note in this context that j is a gradient field, evolved as an independent variable. In virtue of this
definition, the curl-free constraint ∇ ∧ j = 0 must be respected by admissible solutions. This also allows to restructure
the corresponding evolution equation, by adding (∇ ∧ j) ∧ u to the left-hand side. This subtle modification is important,
as it restores Galilean invariance to the system. Taking into account all the previous considerations and notations, one
can obtain the following first-order set of evolution equations

∂ρ

∂t
+ div (ρu) = 0, (6a)

∂ρu
∂t
+ div (ρu ⊗ u + Π) = 0, Π = P(ρ, η, j) I + α(ρ) j ⊗ j, (6b)

∂j
∂t
+ ∇ (j · u + θ(ρ, η)) +

 ∂j
∂x
−

(
∂j
∂x

)T  u = 0, (6c)

∂ρη

∂t
+ div (ρηu + α(ρ)j) = 0. (6d)

where the total pressure P(ρ, η, j) is given by

P(ρ, η, j) = p(ρ, η) +
1
2

(
ρα′(ρ) − α(ρ)

)
||j||2 , p(ρ, η) = ρ2 ∂ε

∂ρ
.

3.2. Dissipation and asymptotic analysis

It is possible to complement this system with dissipation, at the level of the heat transfer. This can be done while still
conserving the hyperbolic structure by using Rayleigh’s dissipation function [26], so that the new system writes

∂ρ

∂t
+ div (ρu) = 0, (7a)

∂ρu
∂t
+ div (ρu ⊗ u + Π) = 0, Π = P(ρ, η, j) I + α(ρ) j ⊗ j, (7b)

∂j
∂t
+ ∇ (j · u + θ(ρ, η)) +

 ∂j
∂x
−

(
∂j
∂x

)T  u = −
∂R

∂j
, (7c)

∂ρη

∂t
+ div (ρηu + α(ρ)j) =

α(ρ)
θ(ρ, η)

∂R

∂j
· j. (7d)

Here R is the Rayleigh dissipation function and which we take in the simplest form as

R =
1
2τ
∥j∥2,

∂R

∂j
=

1
τ

j, (8)

where τ is a characteristic relaxation time. This structure is naturally compatible with the total energy conservation and
straightforward computations, whose details are given in Appendix B, show that multiplying each of the equations in
system (7) with the corresponding conjugate variable and summing up yields the energy conservation law

∂E
∂t
+ div (Eu + Πu + q) = 0, q = α(ρ) θ(ρ, η) j,

where
E =

1
2
ρ ||u||2 + ρε(ρ, η) +

1
2
α(ρ) ||j||2 .

4



F. DHAOUADI AND S. GAVRILYUK

The term q in the energy flux corresponds to interstitial working [27], and can be interpreted here as the heat flux
density vector. In fact, the relaxation time τ can be chosen such that the energy equation is asymptotically consistent
with Fourier’s law of heat conduction. Assuming that τ is sufficiently small, we can expand all the variables in power
series up to first order in τ as follows

ρ = ρ0 + O(τ), u = u0 + O(τ), η = η0 + O(τ), j = j0 + τj1 + O(τ2),

and then insert these expansions in equation (7c). Multiplying the latter by τ allows us to write

τ

∂j0

∂t
+
∂j0

∂x
u0 +

(
∂u0

∂x

)T

j0 + ∇θ(ρ0, η0)
 = −(j0 + τj1) + O(τ2).

Now, by equating in succession the coefficients of this expansion to zero, starting from the leading order, one obtains

j0 = 0, j1 = −∇θ(ρ0, η0) ⇒ j = −τ ∇θ(ρ0, η0) + O(τ2).

Under these considerations, the heat flux vector expresses as

q = −τα(ρ0) θ(ρ0, η0)∇θ(ρ0, η0).

Thus, we identify the latter with the one that appears in Fourier’s law of heat conduction and which is given by
qF = −K∇θ where K is the thermal conductivity. As a result, one obtains an expression of the relaxation time

τ =
K

α(ρ0) θ(ρ0, η0)
, (9)

for which our model is asymptotically consistent with Fourier’s law of heat conduction. Let us remark that if we take
τ as a constant, the constraint ∇ ∧ j = 0 still holds even in the presence of the right hand-side, provided the initial
condition for j is also curl-free. Indeed applying the curl operator to equation (7c) in the case where R is given by (8)
with τ = constant we get

∂

∂t
(∇ ∧ j) + ∇ ∧ ((∇ ∧ j) ∧ u) = −

1
τ
∇ ∧ j.

If ∇ ∧ j ≡ 0 initially, it will remain as such for all t > 0. In the one dimensional case, since the curl-free constraint is
trivially satisfied, τ can also be a function of dependent variables.

3.3. Total energy convexity

System of equations (7) is not a set of conservation laws since the evolution equation for j (7c) is not in conservative
form. Therefore, proving hyperbolicity is not straightforward since we cannot use the Godunov-Lax-Friedrichs approach
based on the existence of an additional scalar conservation law for a conservative system [28, 29]. It appears that the
convexity of the energy as a function of (ρu, j, ρη, ρ) is nevertheless a sufficient condition of hyperbolicity (for proof,
see Appendix C). Therefore, let us check the positive definiteness of the total energy hessian. The convexity of the total
energy per unit volume is related to the convexity of the specific energy via the following theorem allowing to fairly
simplify the algebra [23, 30].
Theorem 1. Let f (q1, · · · , qn) be a convex function on a subset Ω ⊂ R+ × Rn−1. Then

h (1/q1, q2/q1, · · · , qn/q1) = 1/q1 f (q1, q2, · · · , qn)

is also convex.

In our case, the specific energy considered as a function of (u, vj, η, v) is given by

e(u, vj, η, v) =
1
2
||u||2 +

α(1/v)
2v

||vj||2 + ε(v, η).

Here, by abuse of notation, we denoted ε(1/v, η) by ε(v, η). Furthermore, it suffices to take u = (u, 0, 0) and j = ( j, 0, 0)
as the considered energy only depends on the norms of these vectors. Under these considerations, the Hessian of e in
the basis (u, v j, η, v) is given by

∇2e =


1 0 0 0
0 εηη 0 εvη

0 0 α(1/v)/v − j
(
α′ (1/v) + vα (1/v)

)
/v2

0 εvη − j
(
α′ (1/v) + vα (1/v)

)
/v2 εvv +

j2

2v3

(
α′′ (1/v) + 4vα′ (1/v) + 2v2α (1/v)

)
 .

5
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In order to evaluate the positive definiteness of this matrix, we use here Sylvester’s criterion, i.e., the determinant of the
principal minors must be positive which yields the following inequalities

εηη > 0, α(1/v)/v > 0,
(
α(1/v)α′′(1/v) − 2α′(1/v)2

) q2

2v3 εηη + α(1/v)det
(
∇2

(v,η)ε(v, η)
)
> 0.

Taking into account that by definition v > 0 and α(1/v) > 0 and assuming that ε(v, η) is a convex function in (v, η), it is
therefore sufficient to have

α(1/v)α′′(1/v) − 2α′(1/v)2 ≥ 0 for v > 0,
which can be cast in an equivalent simpler form in terms of ρ

∂2

∂ρ2

(
1
α(ρ)

)
≤ 0, for ρ > 0.

This simply means, that the energy e is convex if 1/α(ρ) is a concave function of ρ. One simple example verifying this
criteria is α(ρ) = κ2/ρ where κ is a constant and which we will we consider in later parts of the paper.
Remark. As a consequence of theorem 1, if 1/α(ρ) is a concave function of ρ, then the energy

E(Q) =
1

2ρ
||m||2 + ρε(ρ, s/ρ) +

1
2
α(ρ) ||j||2

is also a convex function of QT =
(
ρ,mT , s, jT

)
where m = ρu and s = ρη.

3.4. Friedrichs symmetric form

Symmetric t−hyperbolic systems in the sense of Friedrichs [31] is a very important class of partial differential equations.
Not only it allows to establish the well-posedness of the Cauchy problem [32], it also simplifies linear wave analysis in
terms of symmetric matrices. Let us introduce the conjugate variables to Q defined by

UT =
∂E
∂Q
=

(
Eρ, Em, Es, Ej

)
=

(
µ,uT , θ, α jT

)
.

where µ = Eρ is the generalized chemical potential. Let E⋆ be the Legendre transform of the energy E

E⋆(U) = UT Q − E(Q), QT =
∂E⋆

∂U
.

In the variables U, the system is symmetric hyperbolic in the sense of Friedrichs if E(Q) is a convex function of Q.
Under these notations, system of equations (7) can be cast into the symmetric form (see Appendix C)

Ã
∂U
∂t
+

∑
i

B̃i ∂U
∂xi
= S,

where Ã is the Hessian matrix of E⋆(U), B̃i are symmetric matrices related to the fluxes and non-conservative terms in
the governing equations and S is the vector of source terms.

4. Hyperbolic model analysis
4.1. Eigenstructure study

System of equations (7) is provably invariant by rotations of the SO(3) group. This allows us to reduce the study
of its hyperbolicity to the one-dimensional case, i.e., all the components of all the vector variables are kept in the
three dimensions of space but the variables are functions of only (x, t) instead of (x, y, z, t). It suffices to study the
homogeneous system, written here in quasilinear form

∂V
∂t
+ A(V)

∂V
∂x
= 0,

where V is the vector of primitive variables and A is the quasilinear matrix, both given by

V =



ρ
u1
u2
u3
η
j1
j2
j3


, A =



u1 ρ 0 0 0 0 0 0
1
ρ
∂p
∂ρ
+ κ2 ( j22+ j23)

ρ3 u1 0 0 1
ρ
∂p
∂η

0 −2κ2 j2
ρ2 −2κ2 j3

ρ2

−κ2 j1 j2
ρ3 0 u1 0 0 κ2 j2

ρ2 κ2 j1
ρ2 0

−κ2 j1 j3
ρ3 0 0 u1 0 κ2 j3

ρ2 0 κ2 j1
ρ2

−κ2 j1
ρ3 0 0 0 u1 κ2 1

ρ2 0 0
∂θ
∂ρ

j1 j2 j3 ∂θ
∂η

u1 0 0
0 0 0 0 0 0 u1 0
0 0 0 0 0 0 0 u1


.

6
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Straightforward linear algebra shows that A admits 8 eigenvalues whose expressions are given by



χ1 = u1 −
√

Z1 + Z2,

χ2 = u1 −
√

Z1 − Z2,

χ3−6 = u1,

χ7 = u1 +
√

Z1 − Z2,

χ8 = u1 +
√

Z1 + Z2

where



Z1 =
1
2

(
a2

p + a2
T + a2

q

)
,

Z3 =
1
2

(
a2

p − a2
T

)
, Z2 =

√
a4

pT + Z2
3 ,

a2
p =
∂p
∂ρ
= v2εvv, a2

T =
κ2

ρ2

∂θ

∂η
= κ2v2εηη,

a4
pT =

κ2

ρ2

∂p
∂η

∂θ

∂ρ
= κ2v4ε2

vη, a2
q =

2κ2

ρ2

(
j22 + j23

)
,

where ap, aT , apT and aq are auxiliary quantities homogeneous to velocities. In order to prove hyperbolicity for this
system, we need first to prove that all the eigenvalues χ1−8 are real-valued. Given that both Z1 and Z2 are trivially
positive, it suffices to prove in this case that Z1 − Z2 ≥ 0. This follows immediately by rewriting

Z2 =

√
Z2

1 −
(
a2

pa2
T − a4

pT

)
,

and by identifying that a2
pa2

T − a4
pT = κ

2v4det
(
∇2

(v,η)ε(v, η)
)
≥ 0, thus leading to Z1 ≥ Z2. Therefore, the eigenvalues

χ1−8 are real. It remains to check, in the general case whether A admits a full corresponding basis of right eigenvectors.
This is not the case, as straightforward computations show that A is missing two right eigenvectors for the multiple
eigenvalue u1, meaning that system (7) is only weakly hyperbolic. This does not come out as a surprise since this
shortcoming appears in several models where an independent field bound by a curl-free constraint is evolved [33–39].
Nonetheless, there are procedures allowing to recover strong hyperbolicity in this case. One can for instance apply
a curl-cleaning procedure, by introducing an artificial vector field ψ to the equations allowing to propagate discrete
curl-errors to domain boundaries [40]. In this case, the full system of equations accounting for the curl-cleaning is given
below

∂ρ

∂t
+ div (ρu) = 0, (10a)

∂ρu
∂t
+ div

(
ρu ⊗ u + P(ρ, j) I +

κ2

ρ
j ⊗ j

)
= 0, (10b)

∂ρη

∂t
+ div

(
ρηu +

κ2

ρ
j
)
= 0, (10c)

∂j
∂t
+ ∇ (j · u + θ(ρ, η)) +

 ∂j
∂x
−

(
∂j
∂x

)T  u +
ρ

κ
ac∇ ∧ ψ = 0, (10d)

∂ψ

∂t
+
∂ψ

∂x
u −
κ

ρ
ac∇ ∧ j = 0. (10e)

where ac is the cleaning velocity. The factors multiplying the curl terms in equations (10d) and (10e) are not arbitrary.
They are chosen as such in order to ensure thermodynamic compatibility of this modified system of equations with total
energy conservation, which in this case becomes (see Appendix B)

∂E

∂t
+ div

(
Eu + Πu +

κ2

ρ
θ(ρ, η) j + κacj ∧ ψ

)
= 0,

where the modified energy writes as

E =
1
2
ρ ||u||2 +

κ2

2ρ
||j||2 + ρε(ρ, η) +

1
2
ρ ||ψ||2 , (11)

In three space dimensions, this system admits the eigenvalues χc
i which are given by

χc
1,2 = u1 − ac, χc

3 = u1 −
√

Z1 + Z2, χc
4 = u1 −

√
Z1 − Z2, χc

5−7 = u1,

χc
8 = u1 +

√
Z1 − Z2, χc

9 = u1 +
√

Z1 + Z2, χc
10,11 = u1 + ac.

7
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To these eigenvalues corresponds a full basis of right eigenvectors and which are collected below in the corresponding
order of the eigenvalues

Rc =



j3r+a − j2r+a 1 1 0 ρ

j1
0 1 1 j2r−a − j3r−a

−
j3acr+a
ρ

j2acr+a
ρ

−
φ+12
ρ

−
φ−12
ρ

0 0 0
φ−12
ρ

φ+12
ρ

j2acr−a
ρ

−
j3acr−a
ρ

κ j2 j3r+b
ρ2

−
κ j1
ρac
−
κ j22r+b
ρ2

κ j2
ρ2
φ−23
φ+23

−
κ j2
ρ2
φ+23
φ−23

0 r36 −
j3
j2
−
κ j2
ρ2
φ+23
φ−23

κ j2
ρ2
φ−23
φ+23

−
κ j1
ρac
−
κ j22r−b
ρ2

κ j2 j3r−b
ρ2

κ j1
ρac
+
κ j23r+b
ρ2

−
κ j2 j3r+b
ρ2

κ j3
ρ2
φ−23
φ+23

−
κ j3
ρ2
φ+23
φ−23

0 0 1 −
κ j3
ρ2
φ+23
φ−23

κ j3
ρ2
φ−23
φ+23

−
κ j2 j3r−b
ρ2

κ j1
ρac
+
κ j23r−b
ρ2

κ j3r+b
ρ2

−
κ j2r+b
ρ2

κ
ρ2
φ−23
φ+23

− κ
ρ2
φ+23
φ−23

0 r56 0 − κ
ρ2
φ+23
φ−23

κ
ρ2
φ−23
φ+23

−
κ j2r−b
ρ2

κ j3r−b
ρ2

j1 j3r+a
ρ
−

j3acr+b
κ

j2acr+b
κ
−

j1 j2r+a
ρ

r−+ r+− 0 1 0 r−− r++
j1 j2r−a
ρ
−

j2acr−b
κ

j3acr−b
κ
−

j1 j3r−a
ρ

0 ρ

κ
0 0 0 0 0 0 0 −

ρ

κ
0

−
ρ

κ
0 0 0 0 0 0 0 0 0 ρ

κ
0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0



.

where auxiliary quantities where introduced to lighten the expressions and whose definitions are as follows

φ±i j =
√
ϕi ± ϕ j, r±+ =

j1
ρ
±
φ−12φ

+
23

κ φ−23
, r±− =

j1
ρ
±
φ+12φ

−
23

κ φ+23
, r36 = ρ

(
φ+12φ

−
12

)2
− 1

2 a2
q

(
φ+13

)2

κ j1 j2apT
, r56 = −

κ
(
φ+13

)2

ρ j1φ−23φ
+
23
,

r±a =
κ

ρac

2acρ
(
a2

c −
(
φ−13

)2
)
± κ j1φ−23φ

+
23(

a2
c −

(
φ+12

)2
) (

a2
c −

(
φ−12

)2
) , r±b =

κ

ρac

κ j1
(
a2

c −
(
φ+13

)2
)
± 2acρφ

−
23φ
+
23(

a2
c −

(
φ+12

)2
) (

a2
c −

(
φ−12

)2
) .

4.2. Structure of the eigenfields

We consider here the homogeneous system (6) in one dimension of space and which writes

∂ρ

∂t
+ u
∂ρ

∂x
+ ρ
∂u
∂x
= 0,

∂u
∂t
+ u
∂u
∂x
+

1
ρ

∂p
∂ρ

∂ρ

∂x
+

1
ρ

∂p
∂η

∂η

∂x
= 0,

∂η

∂t
+ u
∂η

∂x
+
κ2

ρ2

∂ j
∂x
−
κ2

ρ3 j
∂ρ

∂x
= 0,

∂ j
∂t
+ j
∂u
∂x
+ u
∂ j
∂x
+
∂θ

∂ρ

∂ρ

∂x
+
∂θ

∂η

∂η

∂x
= 0.

The associated quasilinear matrix is given by

A1d =



u ρ 0 0

1
ρ

∂p
∂ρ

u
1
ρ

∂p
∂η

0

−
κ2

ρ3 j 0 u
κ2

ρ2

∂θ

∂ρ
j
∂θ

∂η
u


,

and the corresponding eigenvalues, presented in the same fashion as previously, are
λ1 = u −

√
Y1 + Y2,

λ2 = u −
√

Y1 − Y2,

λ3 = u +
√

Y1 − Y2,

λ4 = u +
√

Y1 + Y2,

where


Y1 =

1
2

(
a2

p + a2
T

)
,

Y2 =
√

a4
pT + Y2

3 ,

Y3 =
1
2

(
a2

p − a2
T

)
.

The eigenvalues λ1−4 are distinct for κ , 0. They can be categorized into faster characteristics λ1,4 and slower
characteristics λ2,3, corresponding respectively to the propagation of acoustic and thermal waves. In the same context,
we will refer to the quantities

√
Y1 + Y2 and

√
Y1 − Y2 as the acoustic and thermal sound speeds, respectively. One can

8



F. DHAOUADI AND S. GAVRILYUK

compute, the associated right eigenvectors which are collected hereafter as the columns of the following matrix, from
the left to the right in the same order as their corresponding eigenvalues

r =



ρ ρ ρ ρ

−υ+12 −υ−12 υ−12 υ+12

κ

ρ

υ−23

υ+23
−
κ

ρ

υ+23

υ−23
−
κ

ρ

υ+23

υ−23

κ

ρ

υ−23

υ+23

j −
ρ

κ

υ+12υ
−
23

υ+23
j +
ρ

κ

υ−12υ
+
23

υ−23
j −
ρ

κ

υ−12υ
+
23

υ−23
j +
ρ

κ

υ+12υ
−
23

υ+23


,

where υ±mn =
√

Ym ± Yn. As an example, let us consider the case of a polytropic gas, for which the internal energy is

ε(ρ, η) =
ργ−1

γ − 1
eη/cV ,

where cV is the specific heat capacity at constant volume and γ is the heat capacity ratio. One can check in this case that
the first and fourth eigenfields are genuinely nonlinear in the sense Lax [9] while the second and the third eigenfields
are neither genuinely nonlinear not linearly degenerate. Let us illustrate the latter property on the particular case γ = 2
and cV = 1. Direct computations show that while ∇vλ4 · r4 , 0 for all admissible states, ∇vλ3 · r3 is equal to zero on the
hyperplane of exact equation

κ v =
1
√

6

√
2 +

3
√

17 − 12
√

2 +
3
√

17 + 12
√

2 = 1.0399..., (12)

which separates two regions of different signs of ∇vλ3 · r3. This yields the preliminary conclusion that expansion shocks
and compression fans corresponding to the thermal characteristic fields can exist as solutions to the Riemann problem
for our system [10, 13–15, 17, 19, 20]. This will be further developed in section 5.

4.3. Dispersion relation

In order to further investigate the properties of the proposed model and also assess its stability, we study hereafter
its dispersion relation. System of equations (7) is provably invariant by rotations of the SO(3) group. This allows
us to reduce the analysis to the one-dimensional case. Let us consider a reference equilibrium state defined by
V0 = (ρ0, u0, j0, η0)T , with u0 = 0, j0 = 0. For convenience, we shift here to the corresponding set of conjugate
variables U0, as it allows for a more straightforward verification of stability. Let U′ be a small perturbation around this
equilibrium. We are looking for the solution U in the form :

U = U0 + U′.

Then, we linearize the one-dimensional system around U0 to obtain

Ã0
∂U′

∂t
+ B̃0

∂U′

∂x
= C̃0U′, ÃT

0 = Ã0 > 0, B̃T
0 = B̃0, C̃T

0 = C̃0 ≤ 0,

where the subscript 0 means that the matrices are evaluated at the equilibrium state U0. Then we look for harmonic
wave solutions of the form

U′ = U1ei(kx−ωt), with k ∈ R+, ω ∈ C,
which allows us to obtain the algebraic equation(

−
ω

k
Ã0 + B̃0 +

i
k

C̃0

)
U1 = 0. (13)

We define the phase velocity as the following complex quantity

cp =
ω

k
= cR

p + i cI
p, with cR

p , c
I
p ∈ R.

In this setting, the stability of the solutions naturally requires cI
p ≤ 0. This can be proven as follows, similarly to what

was proposed in [41]. We multiply equation (13) by U
T

to the left, where the bar denotes the complex conjugate. This
allows to write

U
T
1

(
−cR

pÃ0 + B̃0

)
U1 − i

(
cI

p U
T
1 Ã0U1 −

1
k

U
T
1 C̃0U1

)
= 0.

9
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Recall that in the conjugate variables U, the matrices Ã0 and B̃0 are symmetric matrices meaning that the first term is
real. This allows to obtain an expression of cI

p in the form

cI
p =

1
k

Re
(
U

T
1 C̃0U1

)
U

T
1 Ã0U1

≤ 0, since C̃0 ≤ 0.

The non-negative coefficient β = −kcI
p is also commonly referred to as the wave attenuation factor. Now we would like

to evaluate both of cR
p and cI

p for our system and compare them with their equivalents for the Euler system with heat
transfer. The phase velocities for our system, denoted by cp j , j ∈ {1..4} can be obtained as the roots of the following
polynomial

F(cp) =
(
c4

p +
i

kτ
c3

p −

(
κ2

ρ2

∂θ

∂η
+
∂p
∂ρ

)
c2

p −
i

kτ
∂p
∂ρ

cp +
κ2

ρ2

(
∂p
∂ρ

∂θ

∂η
−
∂p
∂η

∂θ

∂ρ

))∣∣∣∣∣∣
U=U0

,

while the phase velocities for the Euler system with heat transfer, linearized around Ũ0 = (ρ0, u0, η0), denoted by
ĉp j , j ∈ {1..3}, are also obtainable from the following polynomial

F̃(c̃p) =
(
c̃3

p +
iKk
ρθ

∂θ

∂η
c̃2

p −
∂p
∂ρ

c̃p −
iKk
ρθ

(
∂p
∂ρ

∂θ

∂η
−
∂p
∂η

∂θ

∂ρ

))∣∣∣∣∣∣
Ṽ=Ṽ0

.

It is worthy of note that for the value κ2 = Kρ0τ/θ which gives asymptotic consistency of both models (9), one has the
algebraic relation

F(cp) = c4
p −
∂p
∂ρ

c2
p +

i
kτ

F̃(cp).

Recall that for a hyperbolic system with source terms, in the short wave limit (k → ∞), the real parts of phase velocities
converge towards characteristic speeds. In our case, we have noted them λ1−4 such that λ1 < λ2 < 0 < λ3 < λ4. At the
rest state we further have λ4 = −λ1 = λ f and λ3 = −λ2 = λs where the subscripts stand for fast and slow, respectively.
Therefore, it makes sense to also categorize the real parts of the phase velocities accordingly into fast and slow velocities
and decompose them as follows

cp1 = −c f − iβ1/k, cp2 = −cs − iβ2/k, cp3 = cs − iβ3/k, cp4 = c f − iβ4/k,

where cs, c f , β1−4 are non-negative quantities representing the slow velocities, fast velocities and attenuation factors
respectively. In a similar way, we can also write the Euler system’s eigenvalues as

c̃p1 = c̃ − iβ̃1/k, c̃p2 = −c̃ − iβ̃1/k c̃p3 = −iβ̃2/k,

where c̃, β̃1−2 are non-negative. Figure 1 provides a graphical representation of the real parts c f , cs and c̃ as well the
attenuation factors β j and β̃ j, as a function of the wavenumber k for the particular case of a polytropic gas.

0

0.5

1

1.5

2

110−2 10−1 101 102 103

λs

c̃∞

ap

λf

cR p
[m

.s
−
1
]

k[m−1]

c̃ cf cs

Figure 1: log-linear plot of the real part of the phase velocities (Left) and log-log plot of the attenuation factors
(Right) for both system of equations (7) (Dashed lines) and system (1) (Solid lines) as a function of the wavenumber k.
Polytropic gas equation of state is used here with γ = 1.4, cV = 3/2, ρ0 = 1, η0 = 1, κ = 1 and K = 0.1.
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As can be seen from Figure 1, the phase velocities of the proposed model are in agreement with the Euler system with
heat conduction, both at the level of the wave speeds as well as the attenuation factors, at least in the long wave regime
and up to a certain cut-off wavenumber. Note that the latter is an increasing function of κ. After this threshold, the
curves eventually separate since they have different limits when k → ∞. Indeed, if we consider for instance the velocity
c̃, to which corresponds c f , the limit for k → 0 is the same for both and is the adiabatic sound speed ap

lim
k→0

c̃ = lim
k→0

c f = ap.

However, the limits for k → ∞ are

lim
k→∞

c̃ =

√
∂p
∂ρ
−
∂p
∂η

∂θ

∂ρ
/
∂θ

∂η
=

√
ργ−1eη/cv = c̃∞, lim

k→∞
c f = λ f .

5. Admissibility of shock waves and nonexistence of contact discontinuities
In this section we study the Rankine-Hugoniot conditions in an attempt to analyze the structure of shocks that are
admissible to the system. In this context let us consider a discontinuity moving at constant speed D, separating
two different states. For physical relevancy, the conservation of mass, momentum, energy and j must be satisfied.
The entropy inequality will be considered as an admissibility criterion. We show below that in this case contact
discontinuities do not exist for κ , 0. Note that since we are interested mainly in the jump relations, the relaxation
sources will be omitted in the analysis. The jump of an arbitrary function g will be denoted as

[
g
]
= gR − gL where

gL and gR are the states on the left and on the right of the discontinuity, respectively. For the chosen set of conserved
variables, the Rankine-Hugoniot conditions write

[M] = 0, (14a)[
p +
M2

ρ

]
= 0, (14b)[

M

(
M2

2ρ2 + ε +
p
ρ
+

1
2
κ2

ρ2 j2
)
+
κ2

ρ
θ j

]
= 0, (14c)[

M
j
ρ
+ θ

]
= 0, (14d)

where we have defined the mass flux across the discontinuity front byM = ρ(u −D).

5.1. Non-existence of contact discontinuities

On contact discontinuities, that is forM = 0, one obtains by direct substitution[
p
]
= 0,

[
κ2 j
ρ
θ

]
= 0, [θ] = 0.

Since p and θ are continuous across the discontinuity, the density will be as well. Hence, for κ , 0, these conditions can
be rearranged into the following jump relations[

ρ
]
= 0, [u] = 0

[
η
]
= 0,

[
j
]
= 0,

meaning that no contact discontinuities are admissible in this case.
Remark. In the particular case where κ = 0, the system degenerates into Euler equations of compressible flows. In
this case, it is rather clear that the evolution equation for j is completely decoupled from the rest. Indeed, the variables
ρ, u and E are completely determined from their equations alone. This means that, similarly to Euler equations, in the
presence of a contact discontinuity, the temperature field will still be discontinuous across it. This may force j to behave
like a Dirac delta function locally in this point. This does not come out as surprising since for κ = 0, the total energy
does not depend on j and the system is only weakly hyperbolic even in one dimension.

5.2. Hugoniot curve for hyperbolic thermal conductivity

SinceM , 0 is continuous across the shock, one can then rewrite equation (14d) as

M

[
j
ρ

]
+ [θ] = 0,

11
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and the energy jump relation (14c) asM (
M2

2ρ2 + ε +
p
ρ

)
+
κ2

2
M

( j
ρ
+
θ

M

)2

−
θ2

M2

 = 0. (15)

Then, it follows from equations (14a, 14d) thatκ2

2
M

(
j
ρ
+
θ

M

)2 = 0,

so that the equation (15) further simplifies into[(
M2

2ρ2 +
p
ρ
+ ε

)
−
κ2

2
θ2

M2

]
= 0. (16)

At this point, it is rather more practical to use the specific volume ν instead of the density ρ. It follows from equation
(14b) thatM2 can be expressed as

M2 = −
[P]
[ν]
.

This finally allows us to obtain from equation (16) the following consequence of the Rankine–Hugoniot conditions

εR − εL +
1
2

(pR + pL)(νR − νL) +
κ2

2
(νR − νL)

θ2R − θ
2
L

pR − pL
= 0.

Let us formulate the following definition :
Definition. We call Hugoniot curve with center (ν0, p0) the curve in the (ν, p)-plane defined as

ε − ε0 +
1
2

(p + p0)(ν − ν0) +
κ2

2

(
θ2 − θ20

)
(ν − ν0)

(p − p0)
= 0. (17)

Through the shock, the jump relations (14) are supplemented by the Clausius-Duhem inequality[
ρ(u −D)η +

κ2

ρ
j
]
≥ 0. (18)

If the subscript 0 denotes the state ahead of the shock front, then this inequality can be rewritten as

η − η0 −
κ2

M2 (θ − θ0) ≥ 0 (19)

This inequality can be seen as a necessary condition of admissibility of shock waves for our system. It should be
checked for each branch of the Hugoniot curve (17). Note that for κ = 0 one recovers the usual entropy inequality for
Euler equations of compressible fluids.

5.3. Properties of the Hugoniot curve

In this proof, and for the sake of lightness, we shall use the prime to denote total differentiation with respect to the
specific volume v, that is for any variable q we have

q′ =
dq
dv

We denote the pressure function as a function of v along the Hugoniot curve of center (v0, p0) as

p = g(v, v0, p0).

Then, we abuse the notations to introduce

θ(v) = θ(g(v, v0, p0), v), η(v) = η(g(v, v0, p0), v), Ψ(v) = η(v) − η0 −
κ2

M(v)2 (θ(v) − θ0).

In what follows, the arguments of these functions will be omitted. Remark that

Ψ′ = η′ −
κ2

M2 θ
′ + G(θ − θ0), where G =

κ2

M4

(
M2

)′
12
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By taking the differential of the Hugoniot curve equation (17) and making use of the Gibbs identity (4), we obtain

θdη −
1
2

(p − p0)dv +
1
2

(v − v0)dp −
κ2

M2 θdθ +
1
2
G

(
θ2 − θ20

)
dv = 0.

Differentiation with respect to v gives us

θ

(
η′ −

κ2

M2 θ
′ + (θ − θ0)G

)
−

1
2
G (θ − θ0)2 −

1
2

(p − p0) +
1
2

(v − v0)g′ = 0,

and therefore
θΨ′ −

1
2

(p − p0) +
1
2

(v − v0)g′ −
1
2
G (θ − θ0)2 = 0. (20)

A second and third differentiations with respect to v yield successively

θ′Ψ′ + θΨ′′ +
1
2

(v − v0)g′′ −
1
2
G′ (θ − θ0)2 − Gθ′ (θ − θ0) = 0, (21)

and

θ′′Ψ′ + 2θ′Ψ′′ + θΨ′′′ +
1
2

g′′ +
1
2

(v − v0)g′′′ −
1
2
G′′ (θ − θ0)2 −

(
2G′θ′ + Gθ′′

)
(θ − θ0) − Gθ′2 = 0. (22)

A series expansion of p in the neighborhood of v0 allows us to write

G = −κ2 v − v0

(p − p0)2

(
g′ −

p − p0

v − v0

)
= −
κ2

2
g′′

g′2

∣∣∣∣∣∣
v=v0

+ O(v − v0),

and therefore, at the center of the Hugoniot curve, we have from equations (20) and (21) that

Ψ′
∣∣∣
v=v0
= 0, Ψ′′

∣∣∣
v=v0
= 0,

and finally from equation (22) we obtain

Ψ′′′
∣∣∣
v=v0
= −

1
2θ0

(
1 + κ2 θ

′2

g′2

)
g′′

∣∣∣∣∣∣
v=v0

.

Notice that similarly to the Euler equations, Ψ(v) has second order contact with the straight line Ψ = 0.

5.4. Analysis of an example: polytropic gas equation of state

We carry on with the previous analysis for the specific example of a polytropic gas equation of state. In the scope of
this study, casting the variables in dimensionless form allows to generalize the result so that it is independent from the
choice of ν0, p0. Therefore, let us consider the dimensionless specific volume ν̃ and pressure p̃ defined as

p̃ = p/p0, ṽ = v/v0,

and we introduce the dimensionless internal energy, temperature and entropy as follows

ε̃ =
ṽ p̃
γ − 1

, θ̃ =
ṽ p̃
γ − 1

, η̃ = log ( p̃ ṽγ) .

One can verify that the Gibbs identity still holds in dimensionless variables. The Hugoniot curve can then be defined as

ν̃ p̃ − 1
γ − 1

+
1
2

(p̃ + 1)(ν̃ − 1) +
κ̃2

2

(
(ν̃ p̃)2 − 1

)
(ν̃ − 1)

(p̃ − 1)
= 0, κ̃ =

ν0 κ

(γ − 1)cV
(23)

In order to further simplify the algebra and lighten the upcoming expressions, we will also take γ = 2. Then, solving
equation (23) allows to obtain two distinct pressure functions p̃+(ṽ) and p̃−(ṽ), each corresponding to a different branch
of the Hugoniot curve. The expressions of p̃+ and p̃− can be obtained explicitly and are given by

p̃±(ṽ) =
ṽ + 1 ± (1 − ṽ)

√
κ̃4ṽ2 + κ̃2(ṽ − 1)2 + 4

ṽ
(
κ̃2(ṽ − 1)ṽ + 3

)
− 1

Remark that in the limit κ̃ = 0, p̃+ degenerates towards the Euler equation’s only admissible branch

p̃E(ṽ) =
3 − ṽ
3ṽ − 1

.

13
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Thus, it seems reasonable here to call p̃+ the acoustic branch while we call p̃− the thermal branch of the Hugoniot
curve. A plot of these curves is given in figure 2. In comparison with Euler’s equation, there exists a new branch p̃− due
to the presence of thermal effects.

0

1

2

3

4

5

0.7 1 1.3 1.6

p̃

ṽ

p̃+

p̃−

Figure 2: Plot of the functions p̃+ and p̃− as a function of ṽ.

Now we would like to check the sign of the quantity Ψ̃, as to examine the nature of admissible shock solutions for
each of branches. Recall that those are shocks for which Ψ̃ ≥ 0 along the Hugoniot curve. As shown in the previous
paragraph, in the vicinity of the curve center, the positivity of Ψ̃ only depends on the sign of g̃′′(1) and whose expression
as a function of κ̃ is given hereafter by

g̃′′(1) =
2κ̃4

√
κ̃4 + 4

− 4κ̃2 +
(
κ̃2 + 3

)2
−

(
κ̃2 + 3

) (√
κ̃4 + 4 + 1

)
A brief study of this function in κ̃ allows to see that it admits the non-trivial root κ̃c = 1.0399... (in accordance with
(12)), such that g̃′′(1) < 0 for κ̃ < κ̃c and g̃′′(1) > 0 for κ̃ > κ̃c. This implies that for κ̃ < κ̃c, there exists a neighborhood
B =]1, ṽmax[ such that Ψ̃ > 0 ∀ ṽ ∈ B. This leads to having a physically admissible branch of the Hugoniot curve in the
region of lower density than the reference state i.e., the system can admit an expansion shock as a physically admissible
solution. To further illustrate this, we provide in figure 3 a graphical representation of Ψ̃+ and Ψ̃−, corresponding to
the acoustic and thermal branches of the Hugoniot curve, respectively for different values of κ̃. The acoustic branch
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Figure 3: Plot of Ψ̃+ (Left) and Ψ̃− (Right) as a function of ṽ for different values of κ̃ that are κc = 1.0399..., κ̃ = 0.8
and κ̃ = 1.3. γ = 2. The dashed lines correspond to non-physical solutions that do not satisfy Ψ̃ ≥ 0.

Ψ̃+ shows a similar behavior to Euler’s equation, and which is rather independent on κ̃ in this regime. The main
difference can be observed on the curves of Ψ̃−, which shows a completely different behavior. Indeed, we can see here
that depending on κ̃, the system may admit additional shock wave solutions for κ̃ > 1 or admit expansion shocks for
κ̃ < κ̃c, in bounded regions around the center. Notice that for κ̃ = κ̃c the system only admits shocks on the acoustic
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branch, meaning it behaves as Euler’s equations. Finally, the last interesting property of our system that is related to the
thermal branch of the Hugoniot curve is the so-called splitting phenomenon. One can see on Figure 3 that Ψ− reaches
its maximum at some point ṽ⋆ both for κ̃ < κ̃c and κ̃ > κ̃c. One can prove that at this pointM2 also attains its local
maximum i.e.,

(
M2

)′
= 0,

(
M2

)′′
< 0. Besides, for ṽ = ṽ⋆, |u −D| is equal to the thermal sound speed

√
Y1 − Y2. This

is always the case of generic eigenfields that are neither genuinely nonlinear nor linearly degenerate in the sense of
Lax [13, 14]. If, for example, κ̃ > κ̃c and ṽL < ṽ⋆, one does not obtain for the corresponding Riemann problem the
classical compression shock, but a rather compression shock followed by a compression fan (see Figure 4). In this
sense, the initial discontinuity verifying the corresponding Rankine-Hugoniot relations, splits into two distinct waves.

t

x

dx
dt

= D⋆

︷ ︸︸ ︷
compression fan

Figure 4: Schematic representation of the wave pattern in the x − t plane, for the shock splitting solution. The shock
propagates to the right, followed by a right facing compression fan. The Clausius-Duhem inequality is satisfied on the
shock. The slope of the rightmost characteristic of the compression fan is equal to the velocityD⋆ of a shock relating
the right state to the ⋆ state.

The Clausius-Duhem inequality (18) is necessary but not sufficient to choose admissible shocks corresponding to the
thermal branch. Indeed, admissible shocks must also verify the Oleinik-Liu admissibility criterion [10, 13]. This is also
the case, for example, for the Euler equations of compressible fluids with non-convex adiabatic curves p = g(v, η) (with
constant η) [11, 12, 19, 20]. An example further illustrating this phenomenon will be shown later in the numerical tests.

6. Numerical scheme
We provide in this section some numerical results for the model (7) which is written in one dimension of space in its
conservative form as follows

∂Q
∂t
+
∂f
∂x
= S, (24)

where Q, f and S are given by

Q =


ρ
ρu
E
j

 , f =


ρu

ρu2 + p
Eu + pu + κ

2

ρ
θ j

ju + θ

 , S =


0
0
0
− j/τ

 .
In the case of a polytropic gas equation of state, p and θ are computed as follows from the other variables

p = (γ − 1)
(
E −

1
2
ρu2 −

κ2

2ρ
j2
)
, θ =

p
cV (γ − 1)ρ

A numerical solution to this PDE will be sought on a discretization of the continuous domain [xL, xR] comprised of N
uniform cells . The ith cell is delimited by [xi− 1

2
, xi+ 1

2
]. The numerical solution is evolved at discrete time-steps denoted

by tn. The cell centers xi and the discrete time tn are such that

xi = xL +

(
i −

1
2

)
∆x ∀i ∈ [1,N], where ∆x =

xR − xL

N
, tn = n∆t, n ∈ [0, nmax]

The hyperbolic system (24) will be solved at the aid of a finite volumes method, based on a second-order ARS(2,2,2)
scheme [42], which classifies as an Implicit-Explicit discretization (IMEX). We recall below the corresponding double
butcher tableaux

0 0 0 0
δ1 δ1 0 0
1 δ2 1 − δ2 0
δ2 1 − δ2 0

,

0 0 0 0
δ1 0 δ1 0
1 0 1 − δ1 δ1

0 1 − δ1 δ1

,


δ1 = 1 −

1
√

2

δ2 = 1 −
1

2δ1
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where the leftmost tableau gives the Runge-Kutta coefficients for the explicit part while the rightmost tableau gives
those for the implicit part. In this context we choose to discretize the fluxes explicitly while we reserve the implicit
discretization for the source terms, if any. As this is a two-stage scheme, at every time tn, an intermediate stage tn∗ is
first computed so that two-stage update formulas are given by

Qn∗
i = Qn

i + ∆t

−δ1 Fn
i+ 1

2
− Fn

i− 1
2

∆x
+ δ1Sn∗

i


Qn+1

i = Qn
i − ∆t

δ2 Fn
i+ 1

2
− Fn

i− 1
2

∆x
+ (1 − δ2)

Fn∗
i+ 1

2
− Fn∗

i− 1
2

∆x

 + ∆t
(
(1 − δ1)Sn∗

i + δ1Sn+1
i

)
.

In these expressions, Qn
i are the cell averages and Sn

i are the corresponding source terms, evaluated in the ith cell at time
tn. Fn

i+ 1
2

is the intercell flux approximated here by the Rusanov flux

Fn
i+ 1

2
=

1
2

(
f
(
wL

n
i+1

)
+ f

(
wR

n
i
))
−

1
2

smax
i+ 1

2

(
wL

n
i+1 − wR

n
i

)
where wL

n
i (resp. wR

n
i ) are the boundary extrapolated values to the left (resp. right) of ith cell, computed from a

piece-wise linear reconstruction wn
i , constructed from Qn

i by the MUSCL approach [43,44]. smax
i+ 1

2
is the maximum signal

speed obtained as

smax
i+ 1

2
= max

(
max

1≤m≤4

(∣∣∣λm(wL
n
i+1)

∣∣∣) , max
1≤m≤4

(∣∣∣λm(wR
n
i )
∣∣∣))

As only the sources are implicit, a local fixed point iteration is employed to solve the resulting equation. The
time-stepping of the scheme is subject to a CFL restriction such that at every time-step

∆t = CFL
∆x
λmax
, λmax = max

i∈[1,N]

(
max

1≤m≤4

(∣∣∣λm(wn
i )
∣∣∣)) ,

where the number CFL < 1 is a constant. Lastly, as numerical simulations of shock waves will be considered, a slope
limiter will be used. In particular we will be using the Min-Mod slope limiter.

Remark. When solving the original Euler system with heat conduction which is of mixed hyperbolic-parabolic type,
the same scheme is used. The parabolic heat flux is simply incorporated to the explicit part by means of centered finite
differences. The time-step in this case must also verify

∆t <
1
2
∆x2

K
.

7. Numerical results
In this part, whenever a test case is presented in dimensional variables, it will be assumed that every variable is in its
corresponding units from the SI, i.e., (Kg,m, s,K). While the units will be omitted from the text, they can still be seen
on the plots for reference. In the description of initial data, be it for Euler’s equation or our model, we shall report
the used values of the density ρ, the velocity u and the pressure p. In particular for our system, the value of j will
also be reported. Besides, in each case we will also give the value of the corresponding total energy, for the sake of
completeness. In all of the cases presented below we use a polytropic gas equation of state.

7.1. shock tube problem for Euler-equations with heat conduction

We consider here a classical shock tube problem. An initial discontinuity is placed at x = xs, separating two different
states on its left and right sides and which are given respectively by

ρL = 1.0, uL = 0.0, pL = 1.0, (EL = 2.50) for x < xs

ρR = 0.1, uR = 0.0, pR = 0.1, (ER = 0.25) for x ≥ xs (25)

In the context of the Euler equations, such an initial discontinuity gives rise to three distinct waves: a shock propagating
to the right, a rarefaction propagating to the left and a contact discontinuity moving along the flow. In the case where
heat conduction is also considered in the energy flux, the contact discontinuity is smeared out, leaving place to a smooth
transition that is expanding over time. The numerical result is provided in figure 5. The numerical domain is [0, 1] and
the initial discontinuity position is xs = 0.5.
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Figure 5: Numerical Profiles at of the density (Left), velocity (middle) and pressure (Right) obtained after solving
numerically the Euler equations supplemented with heat conduction for the initial condition (25). The solid line curves
correspond to the numerical result at t = 0.2 for different values of the heat conductivity K = 0 (Blue), K = 10−3 (Red)
and K = 10−2 (Green). The initial condition is plotted with black dashes lines. Here, γ = 1.4 and cV = 3/2.

Note that for high heat conductivity, the overall profile of the solution begins to significantly change at later times due
to the interaction of the diffused region with the shock front and the rarefaction fan.

7.2. Shock-tube problem for the hyperbolic model with relaxation

In this part, we show numerical evidence of the asymptotic correspondence between the Euler equations supplemented
with heat conduction with our model accounting for relaxation. Hence, let us consider the initial Riemann problem
corresponding to the previous test case

ρL = 1.0, uL = 0.0, pL = 1.0, jL = 0.0, (EL = 2.50) for x < xs

ρR = 0.1, uR = 0.0, pR = 0.1, jR = 0.0, (ER = 0.25) for x ≥ xs (26)
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Figure 6: Numerical result for the choc tube problem (26). Simulation is obtained by the numerical scheme described
in the previous section, on the computational domain [0, 1], discretized over N = 10000 cells. The solid black
line represents the reference solution obtained by solving the Euler system with heat conduction. The dashed lines
correspond to the numerical solutions to the hyperbolic model with κ = 0.01 (Blue) and κ = 1 (Red). The solution
is given at final time t = 0.5. CFL number is taken equal to 0.9 (except for κ = 1 where CFL = 0.5). Values of the
parameters are γ = 5/3, cV = 3/2, K = 10−3.
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For this test, we fix the value of the heat conductivity K = 10−3 and we set the relaxation time as defined from the
asymptotic analysis relation (9) and whose expression in this case is recalled below

τ = KcV (γ − 1)
ρ2

κ2 p
.

We choose in this case to fix κ as a constant and have the relaxation time depend on the state variables as given by the
above expression. In this setting, we show on figure 6 the numerical solution obtained for the initial data (26) for two
different values of κ. The numerical solution shows that for κ = 1, an excellent agreement of both models is observed.
Note that the field j/τ also agrees with the temperature gradient, computed here with finite differences. For significantly
low values of κ, the behavior is rather closer to the classical Euler equations without any heat conduction.

7.3. Expansion shock solution

We have shown previously that expansion shock solutions are admissible for a value of κ above some critical value.
Numerical evidence of such a solution will be presented in this part. The governing equations are taken here without
relaxation terms and we consider an initial discontinuity for which we fix the right state

ρR = 1.0, uR = 0.0, pR = 1.0, jR = 0.0, (EL = 1.0) for x ≥ xs. (27)
According to our previous analysis, we need to have κ < κc in order for expansion shocks to be admissible. We take
γ = 2 and cV = 1 and let us take the value κ̃ = 0.8, for which the thermal branch was already plotted on figure 3 and
which satisfies this condition. From figure 3, we can pick for instance ṽ = 1.25, to which corresponds the value ρL = 0.8.
Then the complete values for the left state are determined from the Rankine Hugoniot conditions and are as follows

ρL = 0.8, uL = −
1
4

√
1 −

√
13
5
, pL =

3
4
+

√
13

20
, jL =

1
4

√
1

15

(
11 +

√
13

)
,

(
EL =

7
150

(
17 +

√
13

))
for x < xs.

(28)
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Figure 7: Numerical result for an expansion shock solution with initial data (27-28). Simulation is obtained by the
numerical scheme described in the previous section, on the computational domain [0, 1], discretized over N = 10000
cells. The red dashed line corresponds to the initial condition while the solid blue line is the numerical solution at final
time t = 0.5. CFL number is taken equal to 0.9. Values of the parameters are γ = 2, cV = 1 and κ = 0.8.

The numerical result on figure 7 shows that the initial discontinuity propagates towards the region of higher density.
Furthermore, notice that the profile of u is such that the velocity is actually higher on the right side of the shock.

7.4. Compression fan solution

Consider a self-similar solution to the governing equations i.e., a solution depending only on x/t. It is rather easy to
formulate the ODE to find such a solution. However, it is even more straightforward to obtain it from the previous test
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case. To do this, one only needs to change the initial data of the previous problem by reversing the values on the left
and right states so that they write

ρL = 1.0, uL = 0.0, pL = 1.0, jL = 0.0 for x < xs.

ρR = 0.8, uR = −
1
4

√
1 −

√
13
5
, pR =

3
4
+

√
13

20
, jR =

1
4

√
1

15

(
11 +

√
13

)
, for x ≥ xs. (29)

All the system parameters are naturally kept the same. It is well-known for the classical Euler equations, with a function
p(v, η), satisfying the inequalities pv < 0, pvv > 0, pη > 0 that such a reversal of initial data transforms a shock into
a rarefaction wave. It is very interesting to see that in our case, the previous expansion shock solution turns into a
compression fan. We take here a domain [0, 1] discretized over a refined mesh of N = 100000 cells. The reason is that
the solution, while smooth, spans over a narrow region of space. Thus, we would like to show that the regularity of the
solution is not due to numerical effects but to its innate structure. The numerical solution is shown in figure 8.
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Figure 8: Numerical result for the compression fan solution with initial data (29), plotted as a function of x̆ =
(x − xs −Dt)/t on two different times t = 0.5 (Red dashed line) and t = 1.0 (Blue solid line). The full computational
domain is x ∈ [0, 1], discretized over N = 100000 cells. CFL number is taken equal to 0.9. Values of the parameters are
γ = 2, cV = 1, κ = 0.8 and xs = 0.2.

The solution is plotted as a function of the variable x̆ = (x − xs − Dt)/t to emphasize the self-similar behavior. The
wave speedD is computed from the Rankine-Hugoniot relations and is given in this case by

D =

√
1 −

√
13
5
.

A first glance at the figure might mislead into thinking this is a classical rarefaction wave but this is not the case. Indeed,
notice from the profile of u that the velocity to the right of the fan is lower than on the left of it.

7.5. Shock wave splitting

For this test, we show numerical evidence of the shock splitting phenomenon, discussed in part 5.4. For this we consider
κ = 1.3 > κc. We consider again the reference right state while the left state is computed from the Rankine-Hugoniot
relation and Clausius-Duhem inequality. However, we emphasize that we take the left state such that the specific volume
vL is on the left of the point v⋆ ≃ 0.7098, where Ψ− reaches its maximum (see green curve of figure 3). We take for
instance vL = 0.635 < v⋆ , to which corresponds the following initial data

ρL ≃ 1.575, uL ≃ 0.271, pL ≃ 1.202, jL ≃ −0.502, (EL ≃ 1.395) for x < xs.

ρR = 1.0, uR = 0.0, pR = 1.0, jR = 0.0, (EL = 1.0) for x ≥ xs. (30)
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Approximate values of the left state variables were taken as to avoid their exact lengthy expressions. This shock is
not admissible and it splits into a compression shock followed by a compression fan. The velocity of the shockD⋆ is
computed in this case from the Rankine-Hugoniot conditions relating the right state and the ⋆ state, corresponding to
the maximum of Ψ−. The compression fan relates the star state with the left state. The numerical result is shown in
figure 9. We take here a domain [0, 2] with the a refined mesh as the previous test case.
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Figure 9: Numerical result for the shock wave splitting solution with initial data (30), plotted as a function of the
self-similar coordinate x̆ = (x − xs −D⋆t)/t on two different times t = 0.1 (Red dashed line) and t = 0.2 (Blue solid
line). The full computational domain is x ∈ [0, 2], discretized over N = 100000 cells. CFL number is taken equal to 0.5.
Values of the parameters are γ = 2, cV = 1 and κ = 1.3.

8. Conclusion
We have presented in this paper a new first-order hyperbolic model describing heat transfer in a compressible fluid.
The equations were derived from Hamilton’s principle of stationary action. They can be written as a symmetric
t−hyperbolic system in the sense of Friedrichs. The model was shown to be compatible with the classical Euler
equations complemented by Fourier’s heat conduction law when suitable relaxation terms are present in the governing
equations. Evidence of expansion shocks as possible solutions to the homogeneous system was established theoretically
and confirmed via numerical simulations. This is due to the facts that the characteristic fields of thermal nature are
neither genuinely non-linear nor linearly degenerate in the sense of Lax. Possible continuation of the analysis would be
to prove rigorously the convergence of exact solutions of this model to those of the Euler system with heat conduction.
At the numerical level, in order to solve multi-dimensional problems, it will be necessary to use proper numerical
methods that are compatible with the curl-free constraint that binds the vector field j. Such methods include for instance
curl-cleaning [33, 35, 40, 45–47] and exactly curl-free discretizations on staggered grids [48–50].
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A. Derivation of constrained Euler-Lagrange equations
We first recall here the Lagrangian from which we shall recover the Euler-Lagrange equations

L =

∫
Ωt

L(ρ,u,∇ϕ, ϕ̇) dΩ, L(ρ,u,∇ϕ, ϕ̇) =
1
2
ρ ||u||2 −

1
2
α(ρ) ||∇ϕ||2 − ρε⋆(ρ, ϕ̇)

In order to obtain the governing system of equations, one needs to consider two particular variations. A first variation
yielding the least action with respect to the displacement of the continuum and a second variation for the independent
degree of freedom ϕ.

A.1. Variation with respect to ϕ

The Euler-Lagrange equation corresponding to the variation of ϕ is

−
∂

∂t

(
∂L
∂ϕt

)
− div

(
∂L
∂∇ϕ

)
= 0,

which yields
∂

∂t

(
ρ
∂ε⋆

∂ϕ̇

)
+ div

(
ρ
∂ε⋆

∂ϕ̇
u + α(ρ)∇ϕ

)
= 0 (31)

A.2. Variation of the motion

The Eulerian variations (at fixed Eulerian coordinates) of the density and the velocity fields, under the total mass
conservation constraint (5) can be obtained as a function of the virtual displacements [22, 24, 51, 52], and are given by

δρ = −div (ρζ) , δu =
∂ζ

∂t
+
∂ζ

∂x
u −
∂u
∂x
ζ

Here ζ(t, x) is the virtual displacement of the continuum. Hamilton’s action between two arbitrary instants t1 > t0 is

a =
∫ t1

t0

∫
Ωt

L(ρ,u,∇ϕ, ϕ̇) dΩ dt,

thus yielding

δa = 0, or
∫ t1

t0

∫
Ωt

δL(ρ,u,∇ϕ, ϕ̇) dΩ dt = 0.

Let us develop the latter expression further.∫ t1

t0

∫
Ωt

δL dΩ dt =
∫ t1

t0

∫
Ωt

(
∂L
∂ρ
δρ +

∂L
∂u
· δu

)
dΩ dt

=

∫ t1

t0

∫
Ωt

(
||u||2

2
−

1
2
α′(ρ) ||∇ϕ||2 − ε⋆ − ρ

∂ε⋆

∂ρ

)
δρ +

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
· δu dΩ dt

=

∫ t1

t0

∫
Ωt

−

(
||u||2

2
−

1
2
α′(ρ) ||∇ϕ||2 − ε⋆ − ρ

∂ε⋆

∂ρ

)
div (ρζ) +

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
·

(
∂ζ

∂t
+
∂ζ

∂x
u −
∂u
∂x
ζ

)
dΩ dt

We recall, that by definition of the virtual displacement, ζ is vanishing on the boundary ∂ (Ω × [t0, t1]). Therefore, we
can use Green-Ostrogradski’s theorem to transform the previous equation as follows∫ t1

t0

∫
Ωt

δL dΩ dt =
∫ t1

t0

∫
Ωt

ζ ·

(
ρ∇

(
||u||2

2
−

1
2
α′(ρ) ||∇ϕ||2 − ε⋆ − ρ

∂ε⋆

∂ρ

))
dΩ dt

+

∫ t1

t0

∫
Ωt

−ζ ·
∂

∂t

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
+
∂ζ

∂x
u ·

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
−
∂u
∂x
ζ ·

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
dΩ dt

Straightforward calculus allows to further transform the products appearing in the latter integral as follows∫ t1

t0

∫
Ωt

∂ζ

∂x
u ·

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
dΩ dt =

∫ t1

t0

∫
Ωt

Tr
(
u ⊗

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
∂ζ

∂x

)
dΩ dt

=

∫ t1

t0

∫
Ωt

−div
(
ρu ⊗ u − ρu ⊗

∂ε⋆

∂ϕ̇
∇ϕ

)
· ζ dΩ dt
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∫ t1

t0

∫
Ωt

∂u
∂x
ζ ·

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
dΩ dt =

∫ t1

t0

∫
Ωt

Tr
(
ζ ⊗

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
∂u
∂x

)
dΩ dt

=

∫ t1

t0

∫
Ωt

−div
(
ζ ⊗

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

))
· u dΩ dt =

∫ t1

t0

∫
Ωt

−div (ζ)
(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
· u −

∂

∂x

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
ζ · u dΩ dt

=

∫ t1

t0

∫
Ωt

∇

((
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
· u

)
· ζ − ∇

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
u · ζ dΩ dt =

∫ t1

t0

∫
Ωt

(∂u
∂x

)T (
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

) · ζ dΩ dt

Replugging these expressions into the action allows to write it as follows

δa =
∫ t1

t0

∫
Ω

(
ρ∇

(
||u||2

2
−

1
2
α′(ρ) ||∇ϕ||2 − ε⋆ − ρ

∂ε⋆

∂ρ

)
−
∂

∂t

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
− div

(
ρu ⊗ u − ρu ⊗

∂ε⋆

∂ϕ̇
∇ϕ

)
−

(
∂u
∂x

)T (
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

) )
· ζ dΩ dt = 0

for any virtual displacement ζ, which allows us to recover the equation

∂

∂t

(
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
+div

(
ρu ⊗ u − ρu ⊗

∂ε⋆

∂ϕ̇
∇ϕ

)
−ρ∇

(
||u||2

2
−

1
2
α′(ρ) ||∇ϕ||2 − ε⋆ − ρ

∂ε⋆

∂ρ

)
+

(
∂u
∂x

)T (
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
= 0.

At this point, we use the Euler-Lagrange equation (31) in order to recast the previous equation as

∂

∂t
(ρu) + div (ρu ⊗ u + α(ρ)∇ϕ ⊗ ∇ϕ) + ρ∇

(
−
||u||2

2
+

1
2
α′(ρ) ||∇ϕ||2 + ε⋆ + ρ

∂ε⋆

∂ρ

)
+

(
∂u
∂x

)T (
ρu − ρ

∂ε⋆

∂ϕ̇
∇ϕ

)
− α(ρ)

∂∇ϕ

∂x
∇ϕ − ρ

∂ε⋆

∂ϕ̇

∂∇ϕ

∂x
u + ρ

∂ε⋆

∂ϕ̇
∇

(
∇ϕ · u − ϕ̇

)
= 0

Besides, we recall the following identities

∇ϕ̇ =
∂∇ϕ

∂t
+
∂∇ϕ

∂x
u +

(
∂u
∂x

)T

∇ϕ

∇

(
1
2

(ρα′(ρ) − α(ρ)) ||∇ϕ||2
)
= (ρα′(ρ) − α(ρ))

∂∇ϕ

∂x
∇ϕ +

||∇ϕ||2

2
ρα′′(ρ)∇ρ = −α(ρ)

∂∇ϕ

∂x
∇ϕ + ρ∇

(
1
2
α′(ρ) ||∇ϕ||2

)
ρ∇

(
ε⋆ + ρ

∂ε⋆

∂ρ

)
= ρ
∂ε⋆

∂ϕ̇
∇ϕ̇ + ρ

∂ε⋆

∂ρ
∇ρ + ρ∇

(
ρ
∂ε⋆

∂ρ

)
= ρ
∂ε⋆

∂ϕ̇
∇ϕ̇ + ∇

(
ρ2 ∂ε

⋆

∂ρ

)
which finally leads us to the momentum equation in the form

∂ρu
∂t
+ div

(
ρu ⊗ u +

(
ρ2 ∂ε

⋆

∂ρ
+

1
2

(ρα′(ρ) − α(ρ)) ||∇ϕ||2
)

I + α(ρ) ∇ϕ ⊗ ∇ϕ
)
= 0.

B. Energy conservation and compatible curl-cleaning

In order to prove the energy conservation, it is generally more convenient to use conservative variables. We shall do the
development in the case where arbitrary curl cleaning is also present in the equations. The total energy in this case is
expressed by (11), written here for general α(ρ):

E(ρ,m, j, s,ψ) =
1

2ρ
||m||2 +

1
2
α(ρ) ||j||2 + ρε(ρ, s/ρ) +

1
2
ρ ||ψ||2 ,

thus implying that

∂E

∂m
=

1
ρ

m = u,
∂E

∂j
= α(ρ)j,

∂E

∂s
= θ, P = ρ

∂E

∂ρ
+m ·

∂E

∂m
+ s
∂E

∂s
− E
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Under these notations, we can rewrite our system of equations accounting for the relaxation sources and for curl-cleaning
as follows

∂ρ

∂t
+ div (ρu) = 0

∂m
∂t
+ div

(
m ⊗ u +

(
m ·
∂E

∂m
+ ρ
∂E

∂ρ
+ s
∂E

∂s
− E

)
I +
∂E

∂j
⊗ j

)
= 0

∂s
∂t
+ div

(
su +

∂E

∂j

)
=
α(ρ)
θ(ρ, η)

∂R

∂j
· j

∂j
∂t
+
∂j
∂x

u +
(
∂u
∂x

)T

j + ∇
∂E

∂s
+ aj∇ ∧ ψ = −

∂R

∂j
∂ψ

∂t
+
∂ψ

∂x
u − aψ∇ ∧ j = 0.

where arbitrary coefficients aj and aψ were introduced and whose exact expressions will be sought later. Multiplying
each of the evolution equations by the corresponding conjugate variable, and summing up we obtain

∂E

∂ρ

(
∂ρ

∂t
+
∂ρ

∂x
u + ρdiv (u)

)
+
∂E

∂m
·

(
∂m
∂t
+
∂m
∂x

u + div (u) m + ∇
(
m ·
∂E

∂m
+ ρ
∂E

∂ρ
+ s
∂E

∂s
− E

)
+ div

(
∂E

∂j
⊗ j

))
+
∂E

∂s

(
∂s
∂t
+
∂s
∂x

u + sdiv (u) + div
(
∂E

∂j

))
+
∂E

∂j
·

∂j
∂t
+
∂j
∂x

u +
(
∂u
∂x

)T

j + ∇
(
∂E

∂s

)
+ aj∇ ∧ ψ


+
∂E

∂ψ
·

(
∂ψ

∂t
+
∂ψ

∂x
u − aψ∇ ∧ j

)
=
∂E

∂s
α(ρ)
θ(ρ, η)

∂R

∂j
· j −

∂E

∂j
·
∂R

∂j
= 0.

Gathering the terms together yields

∂E

∂t
+
∂E

∂x
u +

(
ρ
∂E

∂ρ
+m ·

∂E

∂m
+ s
∂E

∂s

)
div (u) +

∂

∂x

(
ρ
∂E

∂ρ
+m ·

∂E

∂m
+ s
∂E

∂s
− E

)
u + div

(
∂E

∂j
⊗ j

)
· u

+
∂E

∂s
div

(
∂E

∂j

)
+ ∇

(
∂E

∂s

)
·
∂E

∂j
+
∂E

∂j
·

(
∂u
∂x

T

j
)
−
∂E

∂ψ
·
(
aψ∇ ∧ j

)
+
∂E

∂j
·
(
aj∇ ∧ ψ

)
= 0

Thus
∂E

∂t
+ div

((
ρ
∂E

∂ρ
+m ·

∂E

∂m
+ s
∂E

∂s

)
u +
∂E

∂s
∂E

∂j

)
+ div

(
∂E

∂j
⊗ j

)
· u +

∂E

∂j
·

(
∂u
∂x

T

j
)
−
∂E

∂ψ
·
(
aψ∇ ∧ j

)
+
∂E

∂j
·
(
aj∇ ∧ ψ

)
= 0

by identifying that

div
((
∂E

∂j
⊗ j

)
u
)
= div

(
∂E

∂j
⊗ j

)
· u+ Tr

((
∂E

∂j
⊗ j

)
∂u
∂x

)
= div

(
∂E

∂j
⊗ j

)
· u+ j ·

∂u
∂x
∂E

∂j
= div

(
∂E

∂j
⊗ j

)
· u+

∂E

∂j
·

(
∂u
∂x

T

j
)

one can finally write

∂E

∂t
+ div

((
ρ
∂E

∂ρ
+m ·

∂E

∂m
+ s
∂E

∂s

)
u +

(
∂E

∂j
⊗ j

)
u +
∂E

∂s
∂E

∂j

)
− aψ
∂E

∂ψ
· (∇ ∧ j) + aj

∂E

∂j
· (∇ ∧ ψ) = 0

The only terms remaining in non-conservative form are the ones linked to the curl cleaning. However, it is possible
to cast it into a conservative form, provided a suitable choice of the coefficients aj and aψ. In general, the following
criteria is sufficient

aψ
∂E

∂ψ
· j = aj

∂E

∂j
· ψ = C ψ · j, ∀ ψ, j ∈ Rd

where C is any real constant. In our case, replacing the energy derivatives by their expressions, this allows to write

aψ =
C
ρ
, aj =

C
α(ρ)
.

For the specific case α(ρ) = κ2/ρ, we can take for instance C = κac where ac is a free parameter then we have

aψ =
κ

ρ
ac, aj =

ρ

κ
ac.

In this case, one obtains the energy conservation law
∂E

∂t
+ div ( (E + P) u + (α(ρ) j ⊗ j) u + α(ρ) θ(ρ, η) j + κacj ∧ ψ) = 0.
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C. Symmetrization of the system
We recall that the variables Q and their conjugate U are given respectively by

QT =
(
ρ,mT , s, jT

)
UT =

(
µ,uT , θ, ℓT

)
In order to cast system of equations (7) into a symmetric t−hyperbolic from of Friedrichs, we first need to rearrange the
terms in the evolution equation for j as follows

∂j
∂t
+ div (u ⊗ j + θ Id) +

(
∂u
∂x

)T

j − div (u) j = −j/τ

Then, it is required to alter the structure of the momentum equation by adding to it the term − (∇ ∧ j) ∧ Ej ≡ 0 so that it
now writes

∂m
∂t
+ div

(
m ⊗ Em + j ⊗ Ej +

(
p +

1
2

(
ρα′ − α

)
j · j

)
I
)
−

 ∂j
∂x
−

(
∂j
∂x

)T  Ej = 0

Notice that the total pressure can be expressed as follows

p +
1
2

(
ρα′ − α

)
||j||2 = ρ

∂E
∂ρ
+m · Em + sEH − E = E⋆ − j · Ej,

thus allowing to further simplify the momentum equation as follows

∂m
∂t
+ div

(
m ⊗ Em + E⋆I

)
+ div

(
Ej

)
j −

(
∂Ej

∂x

)T

j = 0

These arrangements allow to write the following system of evolution equations

∂ρ

∂t
+ div (ρu) = 0

∂m
∂t
+ div

(
m ⊗ Em + E⋆I

)
+ div

(
Ej

)
j −

(
∂Ej

∂x

)T

j = 0,

∂j
∂t
+ div (u ⊗ j + θ Id) − div (u) j +

(
∂u
∂x

)T

j = −j/τ.

∂s
∂t
+ div

(
su + Ej

)
=

1
τθ

j · Ej

We replace now QT = E⋆U and make use of the identities

∂
(
E⋆u

)
∂µ

= E⋆µ u,
∂
(
E⋆u

)
∂u

= u ⊗ E⋆u + E⋆I,
∂
(
E⋆u

)
∂ℓ

= u ⊗ E⋆ℓ ,
∂
(
E⋆u

)
∂θ

= E⋆θ u

in order to write the system as

∂E⋆µ
∂t
+ div

(
∂
(
E⋆u

)
∂µ

)
= 0

∂E⋆u
∂t
+ div

(
∂
(
E⋆u

)
∂u

)
+ div (ℓ) E⋆ℓ −

(
∂ℓ

∂x

)T

E⋆ℓ = 0,

∂E⋆ℓ
∂t
+ div

(
∂
(
E⋆u

)
∂ℓ

)
+ ∇θ − div (u) E⋆ℓ +

(
∂u
∂x

)T

E⋆ℓ = −j/τ.

∂E⋆θ
∂t
+ div

(
∂
(
E⋆u

)
∂θ

)
+ div (ℓ) =

1
τθ

j · Ej

which can be cast in compact notations as follows

Ã
∂U
∂t
+

∑
i

(
B̃i

1 + B̃i
2

) ∂U
∂xi
= S,

where the matrices
Ã = ∇2

UE⋆, B̃i
1 = ∇

2
U(E⋆ui)
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are symmetric by definition, and B̃i
2 are the quasiliner matrices corresponding to the remaining non-conservative terms.

A straightforward computation shows that they are also symmetric. For instance, in two space dimensions we have

B̃1
2 =



0 0 0 0 0 0
0 0 0 0 −E⋆ℓ2 0
0 0 0 E⋆ℓ2 0 0
0 0 E⋆ℓ2 0 0 1
0 −E⋆ℓ2 0 0 0 0
0 0 0 1 0 0


, B̃2

2 =



0 0 0 0 0 0
0 0 0 0 E⋆ℓ1 0
0 0 0 −E⋆ℓ1 0 0
0 0 −E⋆ℓ1 0 0 0
0 E⋆ℓ1 0 0 0 1
0 0 0 0 1 0


Therefore, if we consider the symmetric matrix B̃i = B̃i

1 + B̃i
2, then system can be written in symmetric form

Ã
∂U
∂t
+

∑
i

B̃i ∂U
∂xi
= S.
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