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Abstract: In this paper, we present a new explicit second-order accurate structure-preserving finite
volume scheme for the first-order hyperbolic reformulation of the Navier–Stokes–Korteweg equations.
The model combines the unified Godunov-Peshkov-Romenski model of continuum mechanics with
a recently proposed hyperbolic reformulation of the Euler–Korteweg system. The considered PDE
system includes an evolution equation for a gradient field that is by construction endowed with a
curl-free constraint. The new numerical scheme presented here relies on the use of vertex-based
staggered grids and is proven to preserve the curl constraint exactly at the discrete level, up to machine
precision. Besides a theoretical proof, we also show evidence of this property via a set of numerical
tests, including a stationary droplet, non-condensing bubbles as well as non-stationary Ostwald
ripening test cases with several bubbles. We present quantitative and qualitative comparisons of the
numerical solution, both, when the new structure-preserving discretization is applied and when it
is not. In particular for under-resolved simulations on coarse grids we show that some numerical
solutions tend to blow up when the curl-free constraint is not respected.

Keywords: Navier–Stokes–Korteweg system; hyperbolic reformulation of dispersive and diffusive
equations; compressible multi-phase flows; structure-preserving curl-free schemes; staggered finite
volume method; augmented Lagrangian approach
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1. Introduction

Many models of mechanics and physics in general are described by a set of evolution
equations, in which some state variables are also subject to stationary differential constraints
(involutions), restricting the set of admissible solutions. Some of the most notable examples
are constraints on the divergence or the curl of a given field, which are encountered for
example when dealing with Maxwell’s equations of electrodynamics or with magneto-
hydrodynamics, which require the magnetic field to be divergence-free for all times. In
many cases, the constraints are supplied as an extra equation to the system, i.e., a given field
obeys a time-evolution equation, but is also bound independently by an additional property.
This is the case, for example, in the incompressible Navier–Stokes equations. The time
evolution of the velocity field is governed by the momentum conservation equation, but
has to also satisfy a supplementary divergence-free constraint due to the incompressibility
assumption. We call the constraint supplementary because it is not a consequence of the
evolution equations, but an additional property. In the incompressible Navier–Stokes
equations the divergence-free condition is actually the pressure equation, see, e.g., [1–3]:
even if the velocity is divergence-free initially, there is no guarantee that it remains so for
later times by means of its evolution equation alone.

Yet, in some other examples, it occurs that the constraint is intrinsic to the mathematical
structure of the evolution equation, that is exact solutions verify it by nature. For instance,
a potential flow has an intrinsic curl-free constraint on the velocity, since the latter is
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expressed as the gradient of a scalar field. Thus, at the theoretical level, the solutions
verify the curl-free constraint by nature. In Maxwell’s equations of electromagnetism, if the
magnetic field is initially divergence-free, its time evolution equation ensures it remains so
for later times. In such cases, we are talking about involution constraints, meaning they
are direct consequences of the structure of the system and they do not need to be supplied
independently. Several systems of different scopes and applications fall into this category,
like the general symmetric hyperbolic and thermodynamically compatible (SHTC) class of
PDEs forwarded by Godunov and Romenski and studied in [4–9], the multi-phase flow
model of Romenski et al. [10] or first-order reductions of the Einstein field equations like
those studied in [11–13].

While it might seem somewhat comforting that involution constraints are automati-
cally satisfied by exact solutions of the PDE, provided that compatible initial conditions are
given, this is a completely different story at the numerical level. Particular attention has
to be directed to such constraints, even if they are an intrinsic property of the system at
the continuous level. Indeed, the accumulation of discretization errors over the course of a
numerical simulation can lead to the violation of curl-free or divergence-free constraints.
This leads to numerical solutions that are neither compatible with the physics of the stud-
ied system, nor with its mathematical structure, see for example [14–16]. In some cases,
the buildup of such errors can lead to unstable numerical simulations and to finite-time
blowups [17,18]. The aforementioned issues have stimulated a lot of research in numerical
analysis for hyperbolic PDE in recent years in order to develop better techniques and
specific numerical methods that are able to address these notorious problems and provide
numerical results that are compatible with the mathematical structure of the equations and
with the underlying physics. Such techniques include for instance the so-called constrained
transport methods [19–26], the Generalized-Lagrangian multiplier divergence-cleaning
approach of Munz et al. [27–30], which was later also extended to hyperbolic curl cleaning
in [13,18,31,32], as well as mimetic discretizations and reconstructions [16,33–37].

Recently, a novel first-order hyperbolic reformulation of the Navier–Stokes–Korteweg
(NSK) system was proposed in [32]. The NSK equations can be seen as a general model
for viscous flows coupled with the Van der Waals second-gradient theory and serves as a
model for compressible multiphase flows. Together with its dissipationless counterpart,
that is the Euler–Korteweg system (EK), it was the subject of several works in recent
decades, out of which we point out a few [38–50]. Alternative relaxation methods leading
to parabolic approximations of different variants of the NSK system were also considered
by Rohde and collaborators in [51–56]. For alternative hyperbolic diffuse interface models
for compressible multiphase flows, the reader may refer to this non-exhaustive selection of
references [57–70].

The hyperbolic reformulation of the NSK system incorporates a hyperbolic relaxation
model of the EK Equations [71–73] into the unified Godunov-Peshkov-Romenski (GPR)
model of continuum mechanics [4–7]. It admits a curl-involution constraint, which will be
the main obstacle to address. The current paper is a natural sequel to the previous work
of the authors [32], where a hyperbolic Generalized Lagrangian Multiplier (GLM) curl
cleaning technique was employed [13,18,31]. In this paper, we design a new second-order
accurate finite volume scheme, based on a carefully chosen vertex-based staggered grid,
allowing to define a discrete gradient operator for which the discrete curl is identically null
at the machine level. The scheme inherits most of its foundations from the works [17,74].
Similar techniques were developed previously for hyperbolic systems with divergence
constraints, see for example [16,23,33,75–77]. Advantages of this type of method include for
instance the fact that the PDE system in itself remains unchanged (unlike in GLM cleaning
techniques for example) and that the discrete curl-errors are zero up to machine accuracy at
the numerical level. This comes at the price of additional efforts in the implementation, as
the method generally requires a well-chosen spatial discretization and a careful (staggered)
positioning of the relevant variables.
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The rest of this paper is organized as follows. In Section 2, we briefly recall the
hyperbolic reformulation of the NSK model; we detail its structure and mathematical
properties. In Section 3, we lay out the details of our new structure-preserving finite
volume scheme. In particular, we describe the structure of the staggered computational
grid, the splitting of the system, how each subsystem is evolved in time and how the
compatible discrete differential operators are defined. Finally, in Section 4, we show how
the presented numerical method performs on a set of different test cases in one and two
space dimensions. In particular, we test the scheme on a standard 1D Ostwald ripening
test case. We provide a convergence table for a stationary 2D bubble solution. Then, an
extensive study of the curl errors is performed for a non-stationary non-condensing bubble
test case, where we compare curl errors with and without staggering, even for alternative
discrete curl operators. The last test-case is the standard 2D Ostwald ripening for which we
show that our simulations perform well when strong topological changes in the solutions
are present. The paper is rounded-off with some conclusions and an outlook to future work
in Section 5.

2. Mathematical Model
2.1. Hyperbolic Reformulation of the Navier–Stokes–Korteweg Equations

The NSK equations can be seen as a dispersive modification of the Navier–Stokes
equations, based on the Van der Waals-Korteweg gradient theory [78]. It serves as a
general model for compressible viscous and dispersive fluid flows. In our case, we will be
considering an isothermal barotropic version of the equations, similar to [50]. In its general
form and under these considerations, the NSK system reads as

∂ρ

∂t
+

∂(ρuk)

∂xk
= 0, (1a)

∂ρui
∂t

+
∂(ρuiuk + Pδik − σik − κik)

∂xk
= 0. (1b)

Here and in the rest of this paper, repeated index summation is implied. x ∈ Rd is
the vector of Cartesian coordinates in d space dimensions and t is the time. In terms of
notations, any system variable that is introduced in the following manuscript is assumed to
depend on space and time. The notation (x, t) will be omitted to ease notation. In system
(1), ρ is the density field and u = (u1, · · · , ud) is the velocity field. P = P(ρ) is the pressure
field, given as a function of the Helmholtz free energy by P = ρW ′(ρ)−W(ρ). δik is the
Kronecker symbol and also denotes the identity matrix. The tensors σ = [σik] and κ = [κik]
are the viscous Navier–Stokes stress tensor under Stokes’ hypothesis and the dispersive
Korteweg stress tensor, respectively. Their expressions are given by

σik = µ

(
∂ui
∂xk

+
∂uk
∂xi
− 2

3
∂um

∂xm
δik

)
, (2)

and

κik = γ

(
d

∑
m=1

(
1
2

(
∂ρ

∂xm

)2
+ ρ

∂2ρ

∂xm2

)
δik −

∂ρ

∂xi

∂ρ

∂xk

)
. (3)

In these expressions, µ is the dynamic viscosity and γ is the capillarity coefficient,
both assumed constant. The dissipationless part of the momentum Equation (1b) can be
obtained as an Euler–Lagrange equation, derived from a variational principle applied to
the following Lagrangian ∫

Ωt

(
1
2

ρu2 −W(ρ)− 1
2

γ|∇ρ|2
)

dΩ,
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under the differential constraint of total mass conservation

∂ρ

∂t
+

∂(ρuk)

∂xk
= 0.

2.2. The Van der Waals Equation of State

The NSK system is commonly used to describe viscous compressible multiphase flows
via a diffuse interface approach. It is required in this context to have an equation of state
allowing multiple admissible thermodynamic equilibria, such as the double-well potential
introduced by Van der Waals [79]. In this case, the Helmholtz free energy admits two
distinct local minima, each corresponding to a different state of the fluid, typically liquid
and vapor phases. The free energy and the corresponding pressure are given in their
dimensionless form by

P(ρ) =
ρRT

1− bρ
− aρ2, W(ρ) = ρRTcv(1− log(T)) + ρRT log

(
ρ

1− bρ

)
− aρ2,

where R is the ideal gas constant, T is the temperature, assumed constant, cv is the heat
capacity at constant volume and a and b are constant parameters. In the rest of this paper,
the following values will be taken

R =
8
3

, T = 0.85, cv =
3
2

, a = 3, b =
1
3

, (4)

for which a representative graph of the pressure P(ρ) is given in Figure 1.

0

0.2

0.4

0.6

0.8

1

0 2ρ∗V ρ∗LρMV ρML

P
[−

]

ρ[−]

Figure 1. The Van der Waals pressure as a function of ρ for the values given in (4). ρM
V and ρM

L are
the Maxwell states for the vapor and liquid phases, respectively. ρ∗V and ρ∗L are local extrema of the
pressure and delimit the non-convexity region.

2.3. First-Order Hyperbolic Reformulation of the NSK Equations

The system considered here for numerical simulation is the first-order hyperbolic
relaxation model approximating the NSK equations presented in [32] and whose structure
and properties are briefly recalled in this section. The model can be seen as the combi-
nation of the unified hyperbolic and thermodynamically compatible Godunov-Peshkov-
Romenski (GPR) model of continuum mechanics [4–7], with an augmented Lagrangian
approach [71,72], which allows to cast dispersive systems of the Euler–Korteweg type into
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first-order hyperbolic PDEs with stiff relaxation terms. The full system of equations, is
given by

∂ρ

∂t
+

∂(ρuk)

∂xk
= 0, (5a)

∂(ρui)

∂t
+

∂(ρuiuk + Pδik − Σik − Kik)

∂xk
= 0, (5b)

∂Aik
∂t

+
∂Aijuj

∂xk
+ uj

(
∂Aik
∂xj
− ∂Aij

∂xk

)
= SA

ik , (5c)

∂(ρη)

∂t
+

∂(ρηuk)

∂xk
= ρw, (5d)

∂pi
∂t

+
∂(pjuj − w)

∂xi
+ uj

(
∂pi
∂xj
− ∂pj

∂xi

)
= 0, (5e)

∂(ρw)

∂t
+

∂(ρwuk − γpk/β)

∂xk
=

1
αβ

(
1− η

ρ

)
. (5f)

Additional degrees of freedom are introduced here with respect to the original system
(1) and whose meanings are recalled hereafter. A = [Aik] is the so-called distortion field.
It describes the deformation of material elements in the GPR model framework. In the
absence of source terms in Equation (5c), A would be equivalent to the inverse deformation
gradient. η, w and p are auxiliary variables introduced in the setting of the augmented
Lagrangian method. η can be seen as the proxy for ρ as the order parameter whose gradient
is used in the Korteweg theory. The gradient and material derivative of η are promoted
to new independent variables, respectively, p and w and whose evolution equations are
established from their definitions [71,72]. Naturally, their evolution equations need also
to be supplemented with the appropriate initial conditions w(x, t = 0) = η̇(x, t = 0) and
p(x, t = 0) = ∇η(x, t = 0). Being the gradient of a scalar field, p inherently admits a curl
involution constraint ∇× p = 0. One can trivially verify it by applying the curl operator
on Equation (5e) and recall the corresponding initial condition to obtain

∂(∇× p)
∂t

= 0; ∇× p(x, t = 0) = 0,

leading to ∇ × p = 0 for all times. One could remark that, for the same reasons, the
non-conservative part of Equation (5e) is theoretically zero as well. However it must
be kept for structural purposes and in particular to have Galilean invariance. The total
momentum conservation Equation (5b) has a seemingly similar structure as its counterpart
in the original NSK model (1b). However, both equations are fundamentally different
since the viscous and dispersive stress tensors in (5b), denoted by Σ = [Σik] and K = [Kik],
respectively, do not involve any high-order derivative of the thermodynamic degrees of
freedom. Indeed, their expressions are given by

Σik = −ρc2
s GimG̊mk, Kik =

(γ

2
pm pm − P′

)
δik − γpi pk, P′ =

η

α

(
1− η

ρ

)
, (6)

where the tensor G = [Gik] is the so-called metric tensor obtained from the distortion
field as Gik = Aim Akm and G̊ = [G̊ik] = Gik − 1

3 Gmm δik is its deviatoric (trace-free) part.
Furthermore, cs is a relaxation speed for the GPR part of the model and can be seen as the
characteristic speed for shear waves, as evidenced by the eigenstructure of the system. P′ is
an additional pressure coming from the relaxation of the dispersive terms. The expression
for the source term SA = [SA

ik ] that appears in Equation (5c) is given by

SA
ik = − 3

τ
det(A)5/3 AimG̊mk, (7)
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where τ is the characteristic time of the strain relaxation. Finally, one should note that the
dissipationless part of system (5), i.e for S = 0, can be derived from Hamilton’s principle of
stationary action, applied to the Lagrangian

L =
∫

Ωt

(
1
2

ρ|u|2 −W(ρ)− 1
4

ρc2
s G̊ikG̊ik −

1
2

γ|p|2 − 1
2αρ

(η − ρ)2 +
1
2

βρw2
)

dΩ,

under the constraints (5a) and (5c). (5b) and (5f) are then the Euler–Lagrange equations,
(5e) and (5d) are closure relations that are immediate consequences of the definitions. The
total energy density E = ρE of this system, with E the specific total energy, is obtained
immediately from the Lagrangian and is given by

E =
1
2

ρ|u|2 + W(ρ) +
1
4

ρc2
s G̊ikG̊ik +

1
2

γ|p|2 + 1
2αρ

(η − ρ)2 +
1
2

βρw2.

One can derive an additional conservation law for it as a consequence of system (5) by
summing its equations, each multiplied by the corresponding entropic variable to obtain

∂E
∂t

+
∂(Euk + (Pδkm − Σkm − Kkm)um − γwpk)

∂xk
= −3

det(A)

ρτc2
s

5/3

EAijEAij .

2.4. Hyperbolicity

The hyperbolicity of system (5) has been addressed in [32], albeit in a slightly different
case, where an additional evolution equation for the so-called curl-cleaning field is also
present. In some similar models in the literature [18,31], GLM curl-cleaning is not only a
means to control discrete curl errors, but it is also necessary in order for the equations to be
strongly hyperbolic in multiple dimensions of space. We show hereafter that this is not the
case for system (5). Since the latter is invariant by rotations, it is enough to consider the one-
dimensional case, i.e all the variables are only dependent on the coordinate x and the time t
and all vector components are kept. This allows to simplify the algebra. We consider the vec-
tor of primitive variables V = (ρ, u1, u2, u3, η, w, p1, p2, p3, A11, A12, A13, A21, A22, A23, A31,
A32, A33)

T and we linearize the system around the reference state A = I and p = (p1, 0, 0).
This allows to reduce the system in its quasilinear form which reads

∂V
∂t

+ M
∂V
∂x

= S,

where S are the sources and M is the quasilinear matrix given by

M =



u1 ρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
η2λ

ρ3 + 2 u1 0 0 λ(ρ−2η)
ρ2 0 γp1

ρ 0 0 4cs2

3 0 0 0 − 2c2
s

3 0 0 0 − 2c2
s

3

0 0 u1 0 0 0 0 γp1
ρ 0 0 c2

s 0 c2
s 0 0 0 0 0

0 0 0 u1 0 0 0 0 γp1
ρ 0 0 c2

s 0 0 0 c2
s 0 0

0 0 0 0 u1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 u1 − γ

βρ 0 0 0 0 0 0 0 0 0 0 0
0 p1 0 0 0 −1 u1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 u1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 u1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 u1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 u1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 u1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 u1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 u1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 u1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 u1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u1



(8)
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Direct computations show that the eigenvalues are given by

λ1−10 = u1, λ11−12 = u1 + cs, λ13−14 = u1 − cs, λ15 = u1 −
√

Z1 + Z2,

λ16 = u1 −
√

Z1 − Z2, λ17 = u1 +
√

Z1 + Z2, λ18 = u1 +
√

Z1 − Z2,

where Z1 and Z2 are auxiliary quantities introduced to lighten the expressions, in the same
fashion as in [32] and whose definitions are recalled here for completeness:

Z1 =
1
2
(a2

0 + a2
s + a2

γ + a2
α + a2

β), Z2 =
√

Z2
1 − a2

β(a2
0 + a2

α + a2
s ),

a0 =
√

ρW ′′(ρ), as =

√
4
3

c2
s , aα =

η

ρ
√

α
, aβ =

√
γ

βρ
, aγ =

√
γ

ρ
p2

1.

Trivial algebra shows that the eigenvalues λ1−18 are real for a judicious, but not very
restrictive choice of the relaxation parameters. In fact, in the region of non-convexity of the
Helmholtz free energy, even though a2

0 is negative, one can choose for example α sufficiently
small so that Z1 remains positive. The reader is referred to [32] for further details. In this
case, the eigenvectors associated with λ1−18 form a basis of R18, even in the regions where
the Helmholtz free energy W(ρ) is not convex. Therefore, under reasonable assumptions,
the system of equations given by (5) is strongly hyperbolic.

3. Numerical Method
3.1. Setting and Notations

In order to numerically solve the system of Equations (5), we propose here a discretiza-
tion based on a staggered grid, that is compatible with the intrinsic curl-free constraints
present in the system. Such an exactly curl-free discretization was recently introduced in
similar contexts but for different PDE systems in [17,74] and we recall here the necessary
details of the numerical scheme. Before proceeding any further, it seems necessary to briefly
define the setting as well as the corresponding notations that will be used throughout
this section. In an attempt to keep the text clear and concise, we shall provide a thorough
description in two-dimensions of space, from which the extrapolation to a third-dimension
is rather straightforward. In all what follows, the coordinates shall be denoted by x and
y instead of x1 and x2 for less cumbersome notations. The computational domain will
be denoted by Ωc and spans over [−Lx/2, Lx/2]× [−Ly/2, Ly/2], where Lx and Ly are
prescribed in advance. It is discretized along the x-axis and the y-axis, forming a uniform
Cartesian grid of Nx × Ny cells, whose barycenter coordinates are denoted by (xp, yq) and
whose expressions are given in a classic form by

xp = − Lx

2
+ (p +

1
2
)∆x, yq = − Ly

2
+ (q +

1
2
)∆y, (p, q) ∈ [0..Nx − 1]× [0..Ny − 1]

where the mesh spacings are given by ∆x = Lx/Nx and ∆y = Ly/Ny, respectively. An
arbitrary grid cell thus spans the subdomain [xp− 1

2
, xp+ 1

2
]× [yq− 1

2
, yq+ 1

2
]. In order to avoid

confusion between tensor indices and discretization indices, throughout this paper we will
use the subscripts i, j, k, l, m for tensor indices, the indexes p, q for the discretization indices
in space and the index n for the time discretization.

In the setting of the exactly curl-free method developed here, staggered grid points
need to be defined, which are required to compute discrete differential operators that are
compatible with the system’s structure. The staggered grid points are defined in the vertices
of the grid cells. For an arbitrary cell of center (xp, yq) these are the points of coordinates
(xp± 1

2
, yq± 1

2
). A representation of the grid points is given in Figure 2. Last, the time is

discretized and the discrete time tn = n∆t at time step n will be denoted as usually by
tn. For every variable φ, the value at coordinates (xp, yq) at time tn shall be denoted as
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φp,q,n. The time superscript will be omitted in most parts, and will be explicitly written
only when necessary.

yq+ 1
2

yq− 1
2

xp+ 1
2

xp− 1
2

xp

yq

in cell vertices

in cell centers

Aik and pi

(ρ, ρui, ρη, ρw)

Figure 2. Schematic of the computational domain featuring the grid points and the staggered dual
grid points. Red squares are barycenters and blue circles are the vertexes of the computational cells.

3.2. Flux Splitting

In order to solve system of Equations (5) numerically, we cast it into the following
split form

∂Q
∂t

+∇ · (Fb(Q) + Fv(Q)) +∇Gv(Q) + Bv(Q) · ∇Q = Sb(Q) + Sv(Q), (9)

where Q is the vector of conserved variables. Fb(Q) and Sb(Q) are the fluxes and the
sources, respectively, which will be discretized on the barycenter-based grid points. The
terms Fv(Q),∇Gv(Q) and Bv(Q) · ∇Q are, respectively, the flux terms, the gradient terms
and the non-conservative products that will be discretized on the cell vertices. Sv(Q) are
the source terms coming for the GPR model and which will be also evolved on the vertices.
If we denote by Fk the kth column of a flux tensor F, then all the previously described terms
are given by

Q =



ρ
ρui
ρη
ρw
pi

Aik

, Fk
b =



ρuk
ρuiuk + (P + P′)δik

ρηuk
ρwuk − γpk/β

0
0

, Sb =



0
0

ρw
1

αβ

(
1− η

ρ

)
0
0


,

Fk
v =



0
−(Σik + Kik + P′δik)

0
0
0
0

, Gv =



0
0
0
0

pjuj − w
Aijuj

,
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and

Bv(Q) · ∇Q =



0
0
0
0

uj

(
∂pi
∂xj
− ∂pj

∂xi

)
uj

(
∂Aik
∂xj
− ∂Aij

∂xk

)


, Sv =



0
0
0
0
0

SA
ik

.

The fluxes Fk
b contain the convective part of the system together with the pressure

terms, both coming from the NSK model itself, as well as from the augmented Lagrangian
relaxation procedure. The fluxes Fk

v only contain the stress tensors, from which the pressure
P′ is subtracted. Gv contains the terms whose gradient will be computed by using a
compatible discrete gradient operator, to be defined in the next section. Note that in our
case, there is only one curl-involution constraining the vector p. In general, if the relaxation
source term Sv is zero, meaning that dispersive solid mechanics are considered, a curl-free
constraint would also affect each of the lines of the tensor A, which are evolved in time.
Therefore, regardless of the considered applications, one loses nothing by discretizing
the equation on A accordingly, so that a future extension to such applications would
be straightforward. Under the previous notations, the system of Equations (9) will be
discretized explicitly, only for the stiff relaxation source term, Sv which will be integrated
using an implicit Euler scheme. The fluxes Fb and Fv as well the sources Sb will be
discretized using an unlimited second-order accurate MUSCL-Hancock-type finite volume
scheme [80], based on a Rusanov-type approximate Riemann solver. The terms ∇Gv,
Bv · ∇Q and Sv will be discretized separately, in a structure-preserving way, hence ensuring
that the curl-free constraint on p is respected exactly at the discrete level. Details of this
dicretization are given in the next section.

3.3. Compatible Discrete Operators and Curl-Free Discretization

The main foundation of the structure-preserving feature of the scheme presented in
this paper relies on the proper definitions of the discrete differential operators, making
use of the carefully chosen grid points. First, it is of utmost importance to recall that the
discrete variables, written here in primitive form, are stored either on the main grid points
(xp, yq) or on the dual grid points (xp± 1

2
, yq± 1

2
) according to the following distribution (see

also Figure 2):

Main grid : ρp,q, up,q
i , ηp,q, wp,q,

Dual grid : pp± 1
2 ,q± 1

2
i , Ap± 1

2 ,q± 1
2

ik .

Some update formulas, as will be seen further down in this section, will require either
a value of the dual variables in the cell centers or vice-verse. For that, and for a generic
variable denoted by ψ, we shall make use of the following averaging formulas from the
corners to the cell barycenters and from the barycenters to the corners. The formulas are,
respectively, given by the simple arithmetic averages as follows:

ψp,q,n =
1
4

(
ψp− 1

2 ,q− 1
2 + ψp− 1

2 ,q+ 1
2 + ψp+ 1

2 ,q− 1
2 + ψp+ 1

2 ,q+ 1
2

)
,

ψp+ 1
2 ,q+ 1

2 =
1
4

(
ψp,q + ψp+1,q + ψp+1,q+1 + ψp,q+1

)
. (10)

Now, it is necessary to introduce the definitions of the discrete gradient and discrete
curl operators, which are at the core of our structure-preserving numerical scheme. For a
given scalar field stored in the centers of the control volumes and denoted by φp,q, one can
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compute a natural discrete gradient ∇hφ in the corners and whose components in the x
and y directions are computed from the surrounding cell centers as follows

(∇hφ)p+ 1
2 ,q+ 1

2 =

 (∂h
xφ)p+ 1

2 ,q+ 1
2

(∂h
yφ)p+ 1

2 ,q+ 1
2

0

,

where


(∂h

xφ)p+ 1
2 ,q+ 1

2 =
1
2

φp+1,q − φp,q

∆x
+

1
2

φp+1,q+1 − φp,q+1

∆x
,

(∂h
yφ)p+ 1

2 ,q+ 1
2 =

1
2

φp,q+1 − φp,q

∆y
+

1
2

φp+1,q+1 − φp+1,q

∆y
.

(11)

Based on this corner gradient, one can now define a compatible discrete curl operator
∇h×∇hφ computed in the cell centers, from the surrounding values of the discrete gradient
and whose component in the z direction is given as follows

(∇h ×∇hφ)p,q · ez =
(∂h

yφ)p+ 1
2 ,q+ 1

2 − (∂h
yφ)p+ 1

2 ,q− 1
2

2∆y
+

(∂h
yφ)p− 1

2 ,q+ 1
2 − (∂h

yφ)p− 1
2 ,q− 1

2

2∆y

− (∂h
xφ)p+ 1

2 ,q+ 1
2 − (∂h

xφ)p− 1
2 ,q+ 1

2

2∆x
− (∂h

xφ)p+ 1
2 ,q− 1

2 − (∂h
xφ)p− 1

2 ,q− 1
2

2∆x
. (12)

It is easy to see that under this definition, substituting the expressions of the discrete
gradient (11) into (12) results into the discrete identity

∇h ×∇hφ ≡ 0 (13)

for all cells in the computational domain, see also [74]. Clearly, this means that any gradient
field defined by means of the discrete operator (11) is exactly curl-free for the discrete curl
operator (12). It now remains to set up a compatible time-evolution that maintains this
exactly curl-free property. Thus, for each component k of the gradient field p, the time
update equation is given by

pp+ 1
2 ,q+ 1

2 ,n+1
k = pp+ 1

2 ,q+ 1
2 ,n

k − ∆t(∇h
k(pjuj − w))p+ 1

2 ,q+ 1
2

− ∆t
4

1

∑
r=0

1

∑
s=0

up+r,q+s,n
m

(
(∇h

m pk)
p+ 1

2 ,q+ 1
2 − (∇h

k pm)
p+ 1

2 ,q+ 1
2

)
. (14)

The last term in particular is a compatible discretization of the term u × (∇ × p)
and straightforward computations [74] show that if ∇h × pp+ 1

2 ,q+ 1
2 ,n = 0, then also ∇h ×

pp+ 1
2 ,q+ 1

2 ,n+1 = 0 holds. A similar update formula will be considered for the distortion
field A. It reads

Ap+ 1
2 ,q+ 1

2 ,n+1
ik = Ap+ 1

2 ,q+ 1
2 ,n

ik − ∆t(∇h
k(Aijuj))

p+ 1
2 ,q+ 1

2

− ∆t
4

1

∑
r=0

1

∑
s=0

up+r,q+s,n
m

(
(∇h

m Aik)
p+ 1

2 ,q+ 1
2 − (∇h

k Aim)
p+ 1

2 ,q+ 1
2

)
− ∆t

3τ
det(Ap+ 1

2 ,q+ 1
2 ,n+1)5/3 Ap+ 1

2 ,q+ 1
2 ,n+1

im G̊p+ 1
2 ,q+ 1

2 ,n+1
mk , (15)

where the last term on right hand side corresponds to the potentially stiff relaxation source
term, which is discretized implicitly in time. In general, as long as this relaxation source
term is present in the evolution equation, there is no curl involution affecting the rows of A.
It is however the case when τ → ∞. Although this will never be the case in the scope of
this paper, the time evolution for A was also discretized in the same compatible way as the
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time evolution of p, in an attempt to keep the scheme as general as possible and extensible
to different regimes, different from the ones considered here.

For both update formulas presented above, the scheme relies solely on a central
discretization. This means that a compatible artificial viscosity must be introduced, in the
same fashion as in [17,74]. At the continuous level, we recall that the vector Laplacian of p
reads as

∇2p = ∇(∇ · p)−∇×∇× p. (16)

While we have already defined a discrete analogue to the gradient and curl operators,
we have not defined a discrete divergence operator yet. In order to have second-order
accurate numerical dissipation terms, one should consider a piece-wise linear reconstruction
of p in the cell centers as the stencil for the discrete divergence operator, computed in the
corners. First, for every vertex of coordinates (xp, yq), one needs to compute vertex-
extrapolated values of p, denoted by pne, pnw, pse and psw, where the letters in subscript
refer unambiguously to the four cardinal directions. The discrete divergence operator at
the vertex (xp+ 1

2 , yq+ 1
2 ) is then given by

(∇h · p)p+ 1
2 ,q+ 1

2 =
pp+1,q+1

1sw − pp,q+1
1nw + pp+1,q

1se − pp,q
1ne

2∆x
+

pp+1,q+1
2se − pp+1,q

2nw + pp,q+1
2se − pp,q

2ne
2∆y

.

Based on this definition, a discrete analogue of the vector Laplacian (16), at the vertex
(xp+ 1

2 , yq+ 1
2 ) reads as

(
∇2

hp
)p+ 1

2 ,q+ 1
2
= (∇h(∇h · p))p+ 1

2 ,q+ 1
2 − (∇h × (∇h × p))p+ 1

2 ,q+ 1
2 .

Next, one multiplies this Laplacian by the mesh size h = max(∆x, ∆y) and by an
appropriate representative velocity c∗, then inserts it to into the update formula (14),
to obtain

pp+ 1
2 ,q+ 1

2 ,n+1
k = pp+ 1

2 ,q+ 1
2 ,n

k − ∆t(∇h
k(pjuj − w)− h c∗∇h

j pj)
p+ 1

2 ,q+ 1
2 ,n

− ∆t h c∗εkj3∇
p+ 1

2 ,q+ 1
2 ,n

j

(
ε3lm∇h

l pm

)
− ∆t

4

1

∑
r=0

1

∑
s=0

up+r,q+s,n
m

(
(∇h

m pk)
p+ 1

2 ,q+ 1
2 − (∇h

k pm)
p+ 1

2 ,q+ 1
2

)
, (17)

where εijk denotes the classical Levi-Civita tensor. In a similar manner, the same procedure
is adapted to include numerical viscosity into the evolution of the A at the numerical level,
which now reads as

Ap+ 1
2 ,q+ 1

2 ,n+1
ik = Ap+ 1

2 ,q+ 1
2 ,n

ik − ∆t(∇h
k(Aijuj)− h c∗∇h

j Aij)
p+ 1

2 ,q+ 1
2

− ∆t h c∗εkj3∇
p+ 1

2 ,q+ 1
2 ,n

j

(
ε3lm∇h

l Aim

)
− ∆t

4

1

∑
r=0

1

∑
s=0

up+r,q+s,n
m

(
(∇h

m Aik)
p+ 1

2 ,q+ 1
2 − (∇h

k Aim)
p+ 1

2 ,q+ 1
2

)
− ∆t

1
3τ

det(Ap+ 1
2 ,q+ 1

2 ,n+1)5/3 Ap+ 1
2 ,q+ 1

2 ,n+1
im G̊p+ 1

2 ,q+ 1
2 ,n+1

mk . (18)

In practice, we take the value c∗ = cs. One last remark concerns the algebraic constraint
det(A) = ρ/ρ0, which is a consequence of the time evolution equation of the distortion
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field A, see [6,7]. It is possible to enforce this constraint simply by uniformly rescaling the
object A at every time step according to the update formula

Ãp+ 1
2 ,q+ 1

2 ,n+1 =

(
ρp+ 1

2 ,q+ 1
2 ,n+1

ρ0 det(Ap+ 1
2 ,q+ 1

2 ,n+1)

)1/3

Ap+ 1
2 ,q+ 1

2 ,n+1,

with Ã the rescaled distortion field and A the distortion field before rescaling. This com-
pletes the description of the discretization of the terms ∇Gv(Q), Bv(Q) · ∇Q and Sv(Q).

3.4. Second Order MUSCL-Hancock-Type Scheme for the Remaining Terms

The subsystem which contains the remaining terms Fb, Fv and Sb, i.e.,

∂Q
∂t

+∇ · (Fb + Fv) = Sb (19)

is discretized explicitly in time according to a conservative but unlimited MUSCL-Hancock-
type scheme, see [80]. The time update formula reads as usual, i.e.,

Qp,q,n+1 = Qp,q,n − ∆t
∆x

(
(F1)

p+ 1
2 ,q

b,v − (F1)
p− 1

2 ,q
b,v

)
− ∆t

∆y

(
(F2)

p,q+ 1
2

b,v − (F2)
p,q− 1

2
b,v

)
+∆t S

(
Qp,q,n +

∆t
2

∂tQp,q,n
)

, (20)

where the columns of the numerical flux (F1) and (F2) are defined in the corresponding
cell edges as follows:

(F1)
p+ 1

2 ,q
b,v =

1
2

(
F1

b

(
Qp+ 1

2 ,q,n
−

)
+ F1

b

(
Qp+ 1

2 ,q,n
+

))
− 1

2
sx

max

(
Qp+ 1

2 ,q,n
+ −Qp+ 1

2 ,q,n
−

)
+

1
2

(
F1

v

(
Qp+ 1

2 ,q+ 1
2 ,n
)
+ F1

v

(
Qp+ 1

2 ,q− 1
2 ,n
))

(F2)
p,q+ 1

2
b,v =

1
2

(
F2

b

(
Qp,q+ 1

2 ,n
−

)
+ F2

b

(
Qp,q+ 1

2 ,n
+

))
− 1

2
sy

max

(
Qp,q+ 1

2 ,n
+ −Qp,q+ 1

2 ,n
−

)
+

1
2

(
F2

v

(
Qp+ 1

2 ,q+ 1
2 ,n
)
+ F2

v

(
Qp− 1

2 ,q+ 1
2 ,n
))

.

In these expressions, the terms sx
max and sy

max are the maximum signal speeds in their re-
spective direction, computed from the local maximum eigenvalues λmax = maxk∈[1,...,18] λk
of the quasilinear matrix M. Q± are the boundary extrapolated values, obtained from a
piecewise linear reconstruction from the neighboring cell centers according to the formulas

Qp+ 1
2 ,q,n

− = Qp,q,n +
1
2

∆x ∂xQp,q,n +
1
2

∆t ∂tQp,q,n,

Qp+ 1
2 ,q,n

+ = Qp+1,q,n − 1
2

∆x ∂xQp+1,q,n +
1
2

∆t ∂tQp+1,q,n,

and

Qp,q+ 1
2 ,n

− = Qp,q,n +
1
2

∆y ∂yQp,q,n +
1
2

∆t ∂tQp,q,n,

Qp,q+ 1
2 ,n

+ = Qp,q+1,n − 1
2

∆y ∂yQp,q+1,n +
1
2

∆t ∂tQp,q+1,n,



Mathematics 2023, 11, 876 13 of 25

where ∂xQp,q,n and ∂yQp,q,n are the unlimited slopes in the x and y directions, respectively,
given by

∂xQp,q,n =
Qp+1,q,n −Qp−1,q,n

2∆x
, ∂yQp,q,n =

Qp,q+1,n −Qp,q−1,n

2∆y
,

and the approximation of the time derivative ∂tQp,q,n is computed from the PDE as follows

∂tQp,q,n =Sb(Q
p,q,n)

−
F1

b

(
Qp,q,n + 1

2 ∆x ∂xQp,q,n
)
− F1

b

(
Qp,q,n − 1

2 ∆x ∂xQp,q,n
)

∆x

−
F2

b

(
Qp,q,n + 1

2 ∆y ∂yQp,q,n
)
− F2

b

(
Qp,q,n − 1

2 ∆y ∂yQp,q,n
)

∆y

−
F1

v

(
Qp+ 1

2 ,q+ 1
2 ,n
)
+ F1

v

(
Qp+ 1

2 ,q− 1
2 ,n
)
− F1

v

(
Qp− 1

2 ,q+ 1
2 ,n
)
− F1

v

(
Qp− 1

2 ,q− 1
2 ,n
)

2∆x

−
F2

v

(
Qp+ 1

2 ,q+ 1
2 ,n
)
+ F2

v

(
Qp− 1

2 ,q+ 1
2 ,n
)
− F2

v

(
Qp+ 1

2 ,q− 1
2 ,n
)
− F2

v

(
Qp− 1

2 ,q− 1
2 ,n
)

2∆y
.

This completes the description of the unlimited second-order MUSCL-Hancock-type
finite volume scheme which is used for the discretization of subsystem (19).

4. Numerical Results

In all what follows, whenever a configuration is described for the HNSK (Hyperbolic
reformulation of the NSK) system, we shall provide the initial conditions for the density ρ
and the velocity field u, as would have been the case for the original NSK system. For all
the remaining variables, the corresponding initial values are computed accordingly, as a
function of ρ and u as follows:

A(x, 0) = I, η(x, 0) = ρ(x, 0), p(x, 0) = ∇ρ(x, 0), w(x, 0) = −ρdiv(u(x, 0)).

In particular, at the numerical level, we recall that it is necessary to initialize p using
the compatible gradient ∇hp given in (11). Concerning boundary conditions, and unless
specified otherwise, periodic boundaries are considered. We recall that in the scope of the
NSK model, only one fluid is under consideration and bulk phases are only identified by
the values of the order parameter (ρ for NSK and η for HNSK). Although no interface per
se exists, we might refer to the continuous transition between the liquid and vapor states
densities as a diffuse interface, or just interface for shortness. In the scope of the GPR model,
we remind that unlike the original NSK equations, the model does not depend explicitly on
the dynamic viscosity µ. However, in the stiff relaxation limit, it can be shown via formal
asymptotic analysis that at leading order, the equivalent viscosity is given by µ = τρ0c2

s /6,
see [6] for details. Therefore, in what follows and for each test case, we shall report the
equivalent µ and the shear velocity cs. The reference density ρ0 shall be always taken as
ρ0 = 1. The time-step is constrained by a usual Courant–Friedrichs–Lewy condition of
the form

λmax
∆t
∆x
≤ 1.

In what follows, we take ∆t = CFL ∆x/λM where λM = maxΩ λmax and CFL < 1 is a
constant coefficient whose value is reported in every test case.

4.1. One-Dimensional Ostwald Ripening

We show a first test case in order to validate the numerical scheme in one dimension
of space. Ostwald ripening occurs when a set of different-sized bubbles indirectly merge,
without actually moving one towards the other. To summarize the process, smaller bubbles
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disappear and free their masses into the medium which is absorbed by bigger bubbles.
The process continues until one large bubble remains. We consider an initial configuration,
adapted from [32,50,53–55] described by the following generic initial data

ρ(x, 0) = ρl +
ρl − ρv

2

nb

∑
k=1

(
tanh

(
x− xk − rk

ε

)
− tanh

(
x− xk + rk

ε

))
, u(x, 0) = 0,

where ρl represents the initial liquid phase density and ρv is the initial vapor phase density.
nb is the number of bubbles initially present. For each bubble of index k, xk is the position of
the bubble center and rk is the approximate radius, so that each bubble spans approximately
over the region [xk − rk, xk + rk]. ε is a parameter controlling the initial thickness of the
‘interface’, that is the steepness of the jump from ρl to ρv and vice versa. Note that this
affects only the transient states as the equilibrium interface width only depends on the
capillarity coefficient γ. For this simulation, we take the same parameters that were used
in [32] and which are recalled here for completeness:

nb = 2, x1 = 0.75, x2 = 1.25, r1 = 0.15, r2 = 0.05, ε = 0.02, ρl = 1.8, ρv = 0.3,

γ = 10−3, α = 10−2, β = 10−5, µ = 10−2, cs = 10.

The computational domain and the corresponding discretization parameters are

Ωc = [0, 2], Nx = 4096, CFL = 0.9.

The numerical results are plotted in Figure 3, along the reference numerical solution
obtained in [32]. The comparison shows an excellent agreement between both solutions.

4.2. 2D Stationary Droplet

It is possible to compute numerically a quasi-exact stationary solution for the HNSK
system in two space dimensions, either by solving an initial value problem or a boundary
value problem. We shall use the latter in this case and consider the reference solution
computed in [32] using the COLNEW BVP solver, see [81–83]. We recall that this solution
is obtained from solving the following BVP

ρ′ = p
η
ρ +

α
η ρP′(ρ)

,

η′ = p,
p′ = − p

r − 1
αγρ (ρ− η),

ρ(r = 0) = 1.825, p(r = 0) = 0, p(r = 1) = 0.

(21)

and is provided for reference in Figure 4. The structure of the solution involves a fast
transition separating the liquid and vapor phases and which constitutes the diffuse in-
terface. The peak observed in the gradient field corresponds naturally to the inflection
point in the density profile. In order to simulate numerically this solution we take the
following parameters

γ = 10−3, µ = 10−2, cs = 1, α = 10−2, β = 10−3,

over different-sized grids. The final time is set to t = 0.025 and we take CFL = 0.9. The
numerical result is then compared with the initially provided exact solution. A convergence
table for this solution is provided in Table 1 for a set of variables. The obtained compu-
tational results show that our new structure-preserving scheme achieves second-order of
accuracy, as expected.
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Figure 3. Density profile for the 1D Ostwald ripening simulation plotted at four different times
t ∈ {0, 0.3, 1, 20} obtained by our scheme (Num, black line) and compared against a reference
numerical solution (Ref, blue dots) obtained using an ADER-DG P3P3 method presented in [32].
Parameters used for this simulation are γ = 10−3, µ = 10−2, cs = 10, α = 10−2 and β = 10−5. The
domain is discretized over Nx = 4096 cells.
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Figure 4. Boundary value problem reference solution for the HNSK system. The left figure shows
the radial profiles of ρ and η while the right one shows the radial profile of the gradient field, for
α = 10−2 and γ = 10−3.
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Table 1. Numerical convergence table for the 2D stationary bubble reference solution obtained from
solving (21). Nx and Ny denote the number of elements in the x and y directions. The L2 norm of the
errors for a set of representative variables with respect to the exact solution, are reported in the upper
part and the corresponding convergence order O2 is reported in the lower one. Parameters used in
the simulations are γ = 10−3, µ = 10−2, cs = 1, α = 10−2 and β = 10−3. Final time is t = 0.025.

Nx × Ny εL2(ρ) εL2(u) εL2(v) εL2(η) εL2(p1) εL2(p2) εL2(w)

64× 64 2.23× 10−2 2.70× 10−1 2.70× 10−1 2.70× 10−2 8.56× 10−1 8.56× 10−1 6.11
128× 128 1.32× 10−2 8.93× 10−2 8.93× 10−2 1.31× 10−2 6.54× 10−1 6.54× 10−1 1.88
256× 256 4.73× 10−3 2.02× 10−2 2.02× 10−2 4.57× 10−3 2.07× 10−1 2.07× 10−1 4.89× 10−1

512× 512 1.38× 10−3 4.99× 10−3 4.99× 10−3 1.34× 10−3 5.16× 10−2 5.16× 10−2 1.23× 10−1

1024× 1024 3.71× 10−4 1.25× 10−3 1.25× 10−3 3.59× 10−4 1.27× 10−2 1.27× 10−2 3.11× 10−2

Nx × Ny OL2(ρ) OL2(u) OL2(v) OL2(η) OL2(p1) OL2(p2) OL2(w)

64× 64 − − − − − − −
128× 128 0.76 1.60 1.60 1.04 0.39 0.39 1.70
256× 256 1.48 2.15 2.15 1.52 1.66 1.66 1.95
512× 512 1.77 2.02 2.02 1.78 2.01 2.00 1.99

1024× 1024 1.90 1.99 1.99 1.90 2.02 2.02 1.98

4.3. Non-Condensing Bubble

In order to study quantitatively the numerical curl errors, we consider here a non-
condensing 2D bubble. The initial configuration is taken in the form

ρ(x, 0) = ρl +
ρl − ρv

2

(
tanh

(
r− r0

ε

)
− tanh

(
r + r0

ε

))
, u(x, 0) = 0. (22)

This describes a diffuse bubble centered at the origin with an approximate radius r0.
The domain is taken Ωc = [−0.25, 0.25]× [−0.25, 0.25] discretized over 1024× 1024 cells.
The remaining physical parameters are taken as follows:

r0 = 0.10, ε = 2
√

γ, ρl = 1.8, ρv = 0.3, (23a)

γ = 2× 10−4, α = 10−2, β = 10−5, µ = 10−2, cs = 10. (23b)

The CFL number is set to CFL = 0.9 and all boundary conditions are periodic. The
initial condition is not at equilibrium and the dynamics involve radial fluctuations around
the diffuse interface region until a steady state is reached. The time evolution of curl errors
is plotted in Figure 5 in two different configurations: one with our new structure-preserving
and exactly curl-free discretization, and one without, that is all the variables are simply
evolved in the barycenters of the control volumes, using the MUSCL-Hancock-type scheme.

One can clearly see that the discrete curl errors are kept constantly around machine
precision when the new compatible and exactly curl-free scheme is used, whereas the curl
errors are about eight orders of magnitude higher and growing in time, otherwise. This
is a natural consequence of the choice of the grid points used for the computations that
ensure such a result for the definition of the proposed discrete curl operator. However, a
discrete curl does not have a unique definition. Hence, the following question arises: does
the staggered scheme still perform well regarding curl errors when an alternative arbitrary
discrete curl definition is employed for a posteriori measuring the curl errors? Thus, let us
consider a discrete curl computed by centered finite differences, using barycenter-based
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values bp,q, interpolated a posteriori from the vertices accordingly to (12). This alternative
curl in a cell of coordinates xp, yq, denoted by ∇h

alt × pp,q, reads as

∇h
alt × pp,q =

1
2

(
pp+1,q

2 − pp−1,q
2

∆x
− pp,q+1

1 − pp,q−1
1

∆y

)
. (24)

We plot hereafter the time evolution of the L1 norm of the discrete curl errors according
to the alternative definition (24) and the compatible discrete curl operator (12), for the same
parameters reported in (23) and for different mesh sizes. Note that the alternative curl (24)
is only used for the postprocessing of the data and for measuring the curl errors. It is not
used inside the numerical scheme itself. The obtained computational results are reported
in Figure 6.
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Figure 5. Time-evolution of the L2 norm of the discrete curl errors when a staggered compatible curl-
free discretization is used (blue) and when no staggering is in effect (orange), for the non-condensing
bubble test case. For both simulations, the parameters are γ = 2× 10−4, α = 10−2, β = 10−5,
µ = 10−2, cs = 10. The computational domain is Ωc = [−0.25, 0.25]× [−0.25, 0.25] discretized over
1024× 1024 cells.
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Figure 6. Time-evolution of the L1 norm of the discrete curl errors, with both ∇h (left) and ∇h
alt

(right), when the structure-preserving (SP, continuous lines) staggered scheme is used versus a
simple MUSCL-Hancock (MH, dashed lines) method, on different mesh sizes for the non-condensing
bubble test case. The parameters are γ = 2× 10−4, α = 10−2, β = 10−5, µ = 10−2, cs = 10. The
computational domain is Ωc = [−0.25, 0.25]× [−0.25, 0.25].

The results clearly show that for the new structure-preserving finite volume scheme
proposed in this paper which is based on the discrete curl ∇h × p, for which the method
is proven to be exactly curl-free, the curl errors are stable and remain only slightly above
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machine accuracy, due to round-off errors and which obviously increase with mesh re-
finement. However, when a simply barycenter-based MUSCL-Hancock method is used,
which is not exactly curl-free, the numerical solution becomes unstable and blows up in finite
time. The time evolution is thus reported up to the time when this blowup occurs. Similar
blowups have been reported previously for hyperbolic PDE with curl involutions in [17,18].
One can observe a significant increase in the curl errors before that happens. On the other
hand, for the postprocessing with ∇h

alt, it is interesting to observe that even when one
changes the definition of the discrete curl operator to an arbitrary one which the method is
not meant to preserve exactly, the structure-preserving method still performs much better
concerning the curl errors compared to the standard MUSCL-Hancock scheme. The curl
errors of the structure-preserving scheme are always lower and essentially do not display
any increasing trend and remain bounded over time. In order to investigate the long-time
behavior further, which is very important for structure-preserving schemes, we provide
in Figure 7 the discrete-curl evolution for the same simulation, but over a longer time for
two different meshes. For this simulation, all the model parameters are kept the same as in
Figure 6. The figure shows that the discrete curl-errors remain around the machine zero
range, even for long times and millions of time steps. The slight increase is of course due to
the buildup of round-off errors, which do not necessarily cancel, but which accumulate in
time and which are thus naturally greater for more refined meshes.
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Figure 7. Long-term evolution of the discrete curl errors, for the non-condensing bubble test case.
The left figure corresponds to a simulation with a 512× 512 grid, while the right figure is for a
128× 128 grid. The model parameters taken here are the same as in Figure 6. The upper horizontal
axis indicates the number of time steps, while the lower axis reports the time t.

At this point, it seems also interesting to investigate whether the use of an exactly
curl-free scheme has any notable repercussions on the overall behavior of the numerical
solution. Thus, we plot in Figure 8 a comparison of the density profile and of the gradient
field component p1 for the same non-condensing bubble test, with and without a structure-
preserving discretization, at an intermediate time given by t = 2. The results show that
a deformation of the bubble can be observed around the interface region and a glitch
can be observed in the center of the bubble when no curl-preservation is in effect. These
deformations grow over time and are seemingly what causes the failure of the numerical
simulation at later times. To illustrate this further, we also plot the norm of the discrete
curl field |∇h × p| for both simulations in Figure 9. A quick comparison with Figure 8
shows that the curl errors are mainly concentrated around the same locations where the
deformations are observed and especially around the middle glitch.
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Structure-preserving MUSCL-Hancock
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Figure 8. Comparison of the overall shape of the density field ρ (top) and the gradient field component
p1 (bottom) with both a curl-free discretization (left) and without (right). Results are shown for t = 2
on the 512× 512 grid.
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Figure 9. Two-dimensional distribution of the curl errors |∇h × p| over the full computational
domain for both schemes, for the same non-condensing bubble simulation over the 512× 512 grid.

4.4. Two-Dimensional Ostwald Ripening

A standard test case for the NSK system is the 2D Ostwald ripening, see, e.g., [32,50,53–55].
The principle and the setting is similar to what is proposed in the one-dimensional coun-
terpart and we consider an initial condition expressed in Cartesian coordinates by the
general expression



Mathematics 2023, 11, 876 20 of 25

ρ(x, 0) = ρl +
ρl − ρv

2

nb

∑
k=1

(
tanh

(
ck − rk

ε

)
− tanh

(
ck + rk

ε

))
, u(x, 0) = 0, (25)

where the center of the bubble k is located at (xk, yk), ck is the corresponding local radial
coordinate ck =

√
(x− xk)2 + (y− yk)2 and rk is the approximate radius of the bubble k.

We take here a configuration with nb = 10 bubbles, whose initial positions and approximate
radii are summarized in Table 2.

Table 2. Summary of the coordinates and radii of the bubbles in the initial condition (25).

k 1 2 3 4 5 6 7 8 9 10

xk −0.05 −0.40 −0.40 0.40 0.35 −0.40 0.05 −0.15 0.10 0.40
yk 0.10 −0.40 0.40 0.35 −0.10 −0.00 0.45 −0.25 −0.40 −0.45
rk 0.2 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05 0.05

Since the dynamics of the solution involve the vanishing of the smaller bubbles and the
expansion of the bigger ones, the time evolution involves important topological changes,
implying significant dynamics in the order parameters and in the gradient field p. We
consider a computational domain Ωc = [−0.6,+0.6]× [−0.6,+0.6] discretized over a grid
of 2048× 2048 cells. Concerning the parameters we take ε = 2

√
γ, ρl = 1.8, ρv = 0.3,

γ = 2× 10−4, α = 10−2, β = 10−5, µ = 10−2 and cs = 10. A CFL number of 0.9 is
used in this simulation. The numerical results are reported in Figures 10 and 11 for the
density field ρ and the gradient field p, respectively. The numerical results are qualitatively
in accordance with the expected behavior. The solution evolves towards a single bubble
configuration equilibrium, after all residual kinetic energy has dissipated.

t=0.0

t=1.0 t=1.2 t=5.0

t=0.2 t=0.5

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.8

Figure 10. Numerical result for the density ρ, obtained by our curl-free scheme for the two-
dimensional Ostwald ripening test case. Results are plotted at times t ∈ {0, 0.2, 0.5, 1.0, 1.2, 5.0}.
We recall that the values used here are ρl = 1.8, ρv = 0.3, γ = 2× 10−4, α = 10−2, β = 10−5,
cs = 10 and an effective viscosity of µ = 10−2. The total domain is Ω = [−0.6,+0.6]× [−0.6,+0.6]
discretized over a 4096× 4096 uniform grid with periodic boundary conditions.

Figure 11 shows that the gradient field evolved independently, is also qualitatively in
agreement with the density field. In order to investigate the results more quantitatively, in
particular to check the compatibility of ρ with the order parameter η and if the gradient
field p is in line with the gradient of η, we plot the variables of interest at t = 5 on the lines
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defined by x = −0.05 and y = 0.1, both of which cross the final bubble around its center.
We compare both ρ and η and p with∇η computed numerically with finite differences. The
comparisons are shown in Figure 12. The results show that the order parameter remains
an excellent approximation to the density field. Both components of the independent
gradient field p are also in agreement with the true gradient ∇η in both directions, even
after significant deformations occur in the solution.

t=0.0

t=1.0 t=1.2 t=5.0

t=0.2 t=0.5

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 41.0

Figure 11. Numerical result for the magnitude of the gradient field p for the same simulation as in
Figure 10.
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Figure 12. Comparison of the density profile with the order parameter η (top) and of the gradient
field components p1 and p2 with ∂h

x(η) and ∂h
y(η), respectively, computed with finite differences. The

comparison is made at t = 5, on two extracted lines from the results of Figures 10 and 11, defined by
y = 0.1 (left) and x = −0.05 (right).
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5. Conclusions

In this paper, we have presented a new second-order accurate exactly curl-free scheme
on staggered grids to solve a first-order hyperbolic reformulation of the Navier–Stokes–
Korteweg system presented in [32] while also preserving its natural curl involution con-
straints exactly at the discrete level. The tests in two dimensions of space show that the
discrete curl errors remain around machine precision and are stable in time. We also showed
that in the absence of an exactly curl-free discretization, erroneous behaviors can be ob-
served in the solution, leading to finite-time blowups, especially for under-resolved meshes.

Future research will concern the extension to three space dimensions, which is out
of scope of the present paper. Another future direction of research would be to improve
the current scheme by a semi-implicit time discretization, similar to the one forwarded
in [17,74,77]. This requires first to find an appropriate splitting of the hyperbolic system,
allowing to separate the fast relaxation characteristics so that a semi-implicit discretization
would improve the overall performance and reduce the time-stepping constraints. The
development of arbitrary high-order structure preserving methods is also considered on
the longer term, following the ideas presented in [84,85]. Future work will also concern
the extension of the presented exactly curl-free discretization to a thermodynamically
compatible one, similar to the ideas on HTC schemes recently presented in [86–88]. The
framework of HTC schemes allows the construction of provably nonlinearly stable schemes
in the energy norm and to the best of our knowledge, there are no exactly curl-free HTC
schemes available yet. To date, in HTC schemes the involution constraints have been taken
into account via a hyperbolic and thermodynamically compatible GLM cleaning approach,
see, e.g., [89].
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