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Abstract

In this paper we present a novel first order hyperbolic reformulation of the barotropic Navier-Stokes-
Korteweg system. The new formulation is based on a combination of the first order hyperbolic Godunov-
Peshkov-Romenski (GPR) model of continuum mechanics with an augmented Lagrangian approach that
allows to rewrite nonlinear dispersive systems in first order hyperbolic form at the aid of new evolution
variables. The governing equations for the new evolution variables introduced by the rewriting of the dis-
persive part are endowed with curl involutions that need to be taken care of. In this paper, we account for
the curl involutions at the aid of a thermodynamically compatible generalized Lagrangian multiplier (GLM)
approach, similar to the GLM divergence cleaning introduced by Munz et al. for the divergence constraint
of the magnetic field in the Maxwell and MHD equations. A key feature of the new mathematical model
presented in this paper is its ability to restore hyperbolicity even for non-convex equations of state, such
as the van der Waals equation of state, thanks to the use of an augmented Lagrangian approach and the
resulting inclusion of surface tension terms into the hyperbolic flux.

The governing PDE system proposed in this paper is solved at the aid of a high order ADER discon-
tinuous Galerkin finite element scheme with a posteriori subcell finite volume limiter in order to deal with
shock waves, discontinuities and steep gradients in the numerical solution. We propose an exact solution of
our new mathematical model, show numerical convergence rates of up to sixth order of accuracy and show
numerical results for several standard benchmark problems, including travelling wave solutions, stationary
bubbles and Ostwald ripening in one and two space dimensions.

Keywords: first order hyperbolic reformulation of nonlinear dispersive systems, augmented Lagrangian
approach, thermodynamically compatible generalized Lagrangian multiplier (GLM) curl cleaning, ADER
Discontinuous Galerkin schemes with a posteriori subcell finite volume limiter, unified first order
hyperbolic formulation of continuum mechanics, compressible multi-phase flows,

1. Introduction

Generally in mechanics, most of the prominent models stem from a local description of the continuum,
i.e the medium is taken as a set of infinitesimal elements, each of which can be considered independent, but
can still interact with their closest neighbors when the exchange of conserved quantities is at stake [60]. In
such a setting, the deformation of the medium can be fully determined by constitutive laws that only depend
on the first gradient of the displacement field. While this approach is often satisfactory, it fails to provide
an accurate description of the motion in some cases, out of which we single out dispersive phenomena, and
more particularly compressible fluid flows with surface tension.
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Effects of surface tension usually manifest in multi-phase flows, where one or more interfaces divide
the fluid into separate regions with different thermodynamic properties. While it is acknowledged that
interfaces are sustained by capillary forces, there are different theories that argue their true physical nature.
A complete examination of these theories and their history is not in the scope of this work. Nevertheless,
it seems of importance to recall some of the contributions that set the theoretical foundation for our model.
The reader is referred to [71] for a thorough review of the history.

The first attempts to describe the mechanics of the interface date back to Young, Laplace and Maxwell
in the 19th century. In their formalism, every phase is considered as an independent fluid and one needs to
take into account suitable compatibility conditions on the interface. An alternative theory was forwarded by
Van der Waals in 1893 [78], after Maxwell’s contribution to the matter. In contrast to its predecessors, Van
der Waals proposed a continuous transition of the fluid density across a finite-length layer between the liquid
and its vapor and stated that equilibria where the density distribution is heterogeneous, are compatible with
capillarity, only if the free energy at a point, not only depended on its local density, but also on the densities
in the neighboring points [78, 61]. Based on the work of Van der Waals, Korteweg formulated a constitutive
equation of the Cauchy stress that is a function of both density and its spatial gradients in the static case
[62]. From the continuum mechanics’ standpoint, the deformation in this case also depends on the second
gradient of the displacement field, earning this theory the well-known name of second gradient theory. The
dynamical form of the equations, based on Hamilton’s principle of stationary action, was obtained by Casal
[25, 26] and a year later independently by Eglit [53]. In the absence of dissipation, these equations came
to be known as the Euler-Korteweg system. Its applications extend beyond the scope of capillary fluids to
also reach quantum hydrodynamics and thin films flows, and have been the subject of extensive studies in
the recent decades [6, 8, 9, 10, 16, 17, 15, 27, 56, 58, 66, 3].

Navier-Stokes-Korteweg (NSK) equations can be seen as a dissipative regularization of the Euler-
Korteweg system, obtained by adding viscous stresses to the latter. It is widely used to model viscous
two-phase flows when supplemented with specific non-convex equations of state of the Van der Waals type.
In the frame of the NSK equations, the fluid is considered to be a single phase where the bulk fluids are
distinguished only through the value of density. Thus, the same mono-phase system of equations describes
the fluid motion in the entire domain. In the context of numerical simulations of compressible multi-phase
flows, there are both benefits and drawbacks when addressing this system of equations. First, there is no
need to explicitly track the interface position, since the latter per se does not exist but is rather smeared out.
This makes the so-called diffuse interface approach more suitable to address problems where strong topo-
logical changes in the interface occur, such as droplet breakup or coalescence. Besides, in the vicinity of the
critical temperature, an interface is no longer discernible, making it unclear how to tackle the problem using
a sharp interface approach. On the other hand, discretizing the NSK equations by classical finite-volumes
and finite differences is conditioned by severe time-stepping constraints due to the high-order derivatives
present in the equations, especially when considering multi-dimensional computations. An additional diffi-
culty comes from the associated Van der Waals equation of state, which admits a region of non-convexity,
inside of which the Euler subsystem loses hyperbolicity, rendering the use of classical Godunov-type finite
volume based methods very difficult, or even impossible. For a high order local discontinuous Galerkin
finite element method applied directly to the original NSK model, see the interesting work of Diehl et al.
[37]. In recent advances, relaxation methods were adopted to deal with the above mentioned difficulties.
In particular a parabolic relaxation approach was introduced by Rohde in [69] and developed further in
subsequent works [32, 65, 29, 59]. The approach allows to approximate the NSK system by a second-order
system of mixed hyperbolic-parabolic type, allowing for a more flexible choice of numerical methods.

The main purpose of this paper is to provide a new first order hyperbolic reformulation of the Navier-
Stokes-Korteweg equations, combining the first order hyperbolic Godunov-Peshkov-Romenski (GPR) model
of continuum mechanics [70, 68, 48] with the hyperbolic Euler-Korteweg equations of [35] that make use
of an extended Lagrangian approach forwarded in [55]. We emphasize that the hyperbolic model proposed
in this paper remains hyperbolic even for non-convex equations of state if a sufficiently stiff (small) penalty
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parameter is used in the augmented Lagrangian setting.
In order to deal with the curl constraints present in the equations, we make use of a thermodynamically

compatible GLM curl cleaning technique, following the ideas forwarded in [46, 30, 20] and which extend
the classical hyperbolic GLM divergence cleaning introduced by Munz et al. in [64, 34] for the Maxwell
and MHD equations to the case of hyperbolic PDE systems with curl involutions.

This paper is organized as follows. Section 2 presents a brief recall of the Navier-Stokes-Korteweg
equations and the Van-der-Waals equation of state, followed by a description of the equations of our model.
We present an eigenstructure analysis in order show that the model is hyperbolic in one and two dimensions
of space. A comparison of the dispersion relation properties is finally provided and compared with those of
the original Navier-Stokes-Korteweg system. In Section 3, we present the details of the ADER-DG scheme
with a posteriori subcell finite volume limiter that is used for the numerical simulations. Numerical results
in one and two dimensions, in the stationary and non-stationary case are presented thereafter in Section 4.
The paper closes with some conclusions and an outlook to future work in Section 5.

2. Mathematical model

2.1. The Navier-Stokes-Korteweg equations

The barotropic isothermal Navier-Stokes-Korteweg system is given by

∂ρ

∂t
+
∂(ρuk)
∂xk

= 0, (1a)

∂ρui

∂t
+
∂ (ρuiuk + Pδik − σik − κik)

∂xk
= 0. (1b)

In these equations and in the rest of this paper, x = [xi] ∈ Rd refers to the vector of space coordinates
and t ∈ R+ represents time; ρ = ρ(x, t) is the fluid density and u = [ui(x, t)] is the velocity. The quantity
P = ρW ′(ρ) −W(ρ) represents the hydrostatic pressure, where W(ρ) is the Helmholtz free energy, δik is the
Kronecker symbol denoting the d × d identity matrix, σ = [σi j] is the viscous stress tensor, and κ = [κi j] is
the so-called Korteweg stress tensor, whose expressions are recalled below

σ = µ

(
∇u + ∇uT −

2
3

(∇ · u)I
)
, κ = γ

(
1
2
|∇ρ|2 + ρ∆ρ

)
I − γ∇ρ ⊗ ∇ρ. (2)

Here, µ is the dynamic viscosity and γ is the surface tension coefficient. The viscous stresses are expressed
under the Stokes hypothesis. The dissipationless part of this system (i.e for µ = 0), is the Euler-Korteweg
system of equations with constant capillarity coefficient. It corresponds to the Euler-Lagrange equations of
the following Lagrangian

L =

∫
Ωt

(
ρ

2
|u|2 −W(ρ) −

γ

2
|∇ρ|2

)
dΩ, (3)

obtained by virtue of a least action principle, under the total mass conservation constraint

∂ρ

∂t
+
∂(ρuk)
∂xk

= 0. (4)

The total energy density can be expressed as follows

E =
ρ

2
|u|2 +W(ρ) +

γ

2
|∇ρ|2, (5)

where ρ
2 |u|

2 is the kinetic energy and γ
2 |∇ρ|

2 is the surface tension term as in the gradient theory of Van der
Waals. In the context of the sought applications i.e isothermal two-phase flows, see also [57, 63, 72], the
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Helmholtz free energy must be such that a different equilibrium state for each phase exists, suggesting at
least two local minima for the function W(ρ), separated by a region that is non-convex in ρ. A standard
choice fulfilling these assumptions and which we will consider throughout this paper is a Van der Waals
equation of state, for which the pressure P and the double-well potential W are respectively given by

P(ρ) =
ρRT

1 − bρ
− aρ2, W(ρ) = ρRTcv(1 − log(T )) + ρRT log

(
ρ

1 − bρ

)
− aρ2 (6)

and are both represented in Figure 1 below. Throughout this paper, the parameters a, b,R and T will always
have the following values:

a = 3, b =
1
3
, R =

8
3
, T = 0.85, cv =

3
2
. (7)
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Figure 1: Pressure (left) and free energy (right) as functions of the density ρ for the values (7). ρM
V and ρM

L represent the Maxwell states
for the vapor and liquid phase respectively. The pressure law has two extrema attained in ρ∗V and ρ∗L and which delimit the non-convex
region of W(ρ).

In the setting of the gradient theory of Van der Waals, in order for the fluid phases to coexist simul-
taneously as bulk phases, an additional force is needed to balance pressure in the density transitions. In
this model, this is ensured by the surface energy term, where the coefficient γ acts as a penalty factor for
gradients of density. Smaller values of γ allow for sharper transitions between the phase bulks. The limit
γ → 0 would then correspond to a sharp interface limit.

2.2. A hyperbolic relaxation to the Navier-Stokes-Korteweg system
In order to provide a new first-order hyperbolic model that approximates the barotropic Navier-Stokes-

Korteweg equations (1), it is clear that substantial reformulations of both diffusive and dispersive processes
are required, since the stress tensors σ and K contain terms that depend on high-order space derivatives.
These terms are a source of concern not only from the computational point of view, but also from the
mathematical point of view, given that the structure of the stress tensors, in their classical formulation, is
incompatible with the framework of hyperbolic equations. In fact, while the latter is based on a bounded
wave-speed formulation, the former diffusion and dispersive operators are known to exhibit infinite prop-
agation speeds. An additional difficulty resides in the fact that the associated Van der Waals equation of
state has a non-convex region, resulting in the loss of hyperbolicity in the left-hand side of system (1).
Characteristics-based numerical methods for the Euler subsystem fail in this case as they generally rely on
real-valued wave speeds.
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The relaxation model we propose here, is founded on two key elements. The first ingredient is the
Godunov-Peshkov-Romenski model of continuum mechanics [70, 68, 48]. The model provides an inter-
esting formulation of the continuum, in which a so-called distortion field A(x, t) = Ai j, is used to describe
the deformation of the material elements. It will be referred to as the distortion matrix throughout this
paper. The time evolution of A, when supplied with an appropriate stiff relaxation source term, allows to
generalize the model beyond the scope of solid mechanics to include, inter alia, viscous and non-viscous
fluid flows, with Newtonian or non-Newtonian rheologies, from which, the Navier-Stokes equations can be
asymptotically recovered [48]. The second prerequisite key element is the so-called augmented Lagrangian
formalism [35] which casts second-gradient dispersive systems into first-order hyperbolic equations, that
are derived from variational principles. The merging of both theories, allows us to write a new first-order
system approximating the Navier-Stokes-Korteweg equations and which is given as follows

∂ρ

∂t
+
∂(ρuk)
∂xk

= 0, (8a)

∂(ρui)
∂t
+
∂ (ρuiuk + Pδik − Σik − Kik)

∂xk
= 0 (8b)

∂Aik

∂t
+
∂Aimum

∂xk
+ u j

(
∂Aik

∂x j
−
∂Ai j

∂xk

)
= −S ik, (8c)

∂(ρη)
∂t

+
∂(ρηuk)
∂xk

= ρw, (8d)

∂pi

∂t
+
∂(p ju j − w)

∂xi
+ u j

(
∂pi

∂x j
−
∂p j

∂xi

)
= 0, (8e)

∂(ρw)
∂t

+
∂ (ρwuk − γpk/β)

∂xk
=

1
αβ

(
1 −

η

ρ

)
, (8f)

The model consists of a total mass conservation equation (8a) for the density ρ, a conservation equation for
the momentum ρu (8b), in which the hydrostatic pressure is kept the same as in (1), and alternative stress
tensors K = [Ki j] and Σ = [Σi j], appear in the momentum flux, representing the dispersive and viscous
effects respectively. Their expressions are given by

K =
(
γ

2
|p|2 −

η

α

(
1 −

η

ρ

))
I − γp ⊗ p, Σ = −ρc2

sGdevG, (9)

where G = AT A is called the metric tensor. Equation (8c) is the time-evolution of the distortion matrix A.
The source term S = [S ik] is defined by

S = −
3
τ

det(A)5/3Adev(G), (10)

where τ is the strain dissipation time. Equations (8d) to (8f) are auxiliary equations that come from the
augmented Lagrangian method for the dispersive part of the Navier-Stokes-Korteweg system [35]. In these
equations, η is a new degree of freedom that substitutes ρ as the new order parameter differentiating the bulk
fluids. The variables w = η̇ = ∂tη+u · ∇η and p = ∇η are defined as the material derivative and the gradient
of η respectively. The evolution equations (8d) and (8e) are thus obtained as a straightforward consequence
of these definitions [35]. The non-conservative product that appears in equation (8e) is theoretically zero,
given that p is a gradient field, thus curl-free by construction. This term must be maintained nonetheless for
structure purposes and in particular to keep hyperbolicity in the multidimensional case. Finally, (8f) is an
Euler-Lagrange equation obtained through a least-action principle applied to the system’s Lagrangian

L =

∫
Ωt

(
ρ

2
|u|2 −W(ρ) −

ρ

4
c2

sdevG : devG −
γ

2
|p|2 +

1
2αρ

(η − ρ)2 +
β

2
ρw2

)
dΩ, (11)
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with respect to η and its derivatives. Similarly, equation (8b) is also an Euler-Lagrange equation to the
Lagrangian (11), with respect to the continuum variables that are ρ, u and A. It seems necessary at this
point to highlight that even though our model depends explicitly on the surface tension coefficient γ, the
viscosity µ does not appear anywhere in the equations. Indeed, the constitutive part of the GPR model
does not require explicit specification of the viscosity coefficient. However, in the fluid limit (τ → 0) the
effective viscosity of the model can be computed via a Chapman-Enskog expansion [48] and it is equal to
µ = τρ0c2

s/6. Therefore, whenever we will need to simulate a fluid of a certain viscosity, we shall make use
of this formula for the effective viscosity of the GPR model and impose τ and cs accordingly. Moreover, it
is also possible to asymptotically recover the original Korteweg stress tensor by replacing the term η

α
(1− η

ρ
)

which appears in the tensor K accordingly to equation (8f) and expanding in α and β [36].
By virtue of its definition, the vector p admits a curl involution constraint, that is ∇ × p = 0. While

theoretically, this constraint is satisfied for all times if it is verified for t = 0, this is not guaranteed at the
numerical level due to the buildup of round-off errors. In order to address this problem at the numerical
level, we will use a thermodynamically compatible Generalized Lagrangian multiplier curl-cleaning tech-
nique [46, 30, 20], in the same fashion as in [20], where an additional field variable ψ is used as a means
to propagate curl errors with a prescribed parameter bc, with the purpose of avoiding their accumulation
locally, which could lead to the failure of the numerical simulation [30]. In the setting of this method, an
additional evolution equation is added for the so-called cleaning field ψ, and which is coupled with the
evolution equation for the gradient field p as follows

∂pi

∂t
+
∂(p ju j − w)

∂xi
+ u j

(
∂pi

∂x j
−
∂p j

∂xi

)
+ bcεi jk

∂ψk

∂x j
= 0, (12a)

∂ψi

∂t
+ u j

∂ψi

∂x j
−
γ

ρ
bcεi jk

∂pk

∂x j
= 0. (12b)

The choice of the terms multiplying the curl products is not arbitrary, as the presented form is required
for the energy conservation as proven in Appendix A. The total energy for our system, accounting for the
cleaning contribution is given by

E =
ρ

2
|u|2 +W(ρ) +

ρ

4
c2

sdevG : devG +
γ

2
|p|2 +

1
2αρ

(ρ − η)2 +
β

2
ρw2 +

ρ

2
|ψ|2. (13)

The addition of the cleaning term in the energy is necessary for thermodynamic compatibility and its form
allows for it to be appended in the Lagrangian (11) without altering the corresponding Euler-Lagrange
equations, thus conserving the variational structure. Accounting for the GLM curl cleaning modifications,
an additional scalar balance law for the total energy can be obtained as a consequence of the governing
equations and which writes as

∂tE + ∇ · (E · u − T · u − γwp + γbc ψ × p) = −3
det(A)
ρτc2

s

5/3

EA : EA (14)

where T = Σ +K − P · I is the total stress tensor. Compared to classical models of dispersionless hydrody-
namics, there are two additional contributions in the energy flux which are due to interstitial working[52]
and curl-cleaning energy flux [20] respectively. The former is typical of second gradient continua while the
latter appears essentially when evolution equations are coupled through curl terms, which is typically the
case in electrodynamics, see for example [49].

In what follows we shall refer to the equations (8), supplemented with the GLM curl-cleaning modifi-
cations (12) as the Hyperbolic Navier-Stokes-Korteweg (HNSK) system.

2.3. Hyperbolicity and characteristic velocities
The HNSK system is not straightforward to analyze in its general form, especially when all the space

dimensions are taken into account. However, some considerations of practical interest can fairly reduce the
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complexity of the task and give further insight into the behavior of the full system. Thus, let us proceed by
first considering the one-dimensional case.

2.3.1. One-dimensional analysis
We consider here that all degrees of freedom are functions of t and x that is ∂y ≡ ∂z ≡ 0. We also assume

that u = (u1, 0, 0)T and p = (p1, 0, 0)T . In this setting, the HNSK equations can be cast into the quasi-linear
form

Qt + B(Q)Qx = S(Q) (15)

where Q = (ρ, u1, η,w, p1, A11, A22, A33, ψ1, ψ2, ψ3, A12, A13, A21, A23, A31, A32)T is the vector of primitive
variables, S = S(Q) contains the algebraic source terms and B(Q) is the system matrix which contains the
Jacobian of the flux vector. In an attempt to simplify the algebra, we further suppose that A = I, so that the
system matrix writes

B(Q) =



u1 ρ 0 0 0 0 0 0 0 . . . 0
P′(ρ)
ρ
+

η2

αρ3 u1
ρ−2η
αρ2 0 γp1

ρ
4
3 cs2 − 2

3 cs2 − 2
3 cs2 0 . . . 0

0 0 u1 0 0 0 0 0 0 . . . 0
0 0 0 u1 −

γ
βρ

0 0 0 0 . . . 0
0 p1 0 −1 u1 0 0 0 0 . . . 0
0 1 0 0 0 u1 0 0 0 . . . 0
0 0 0 0 0 0 u1 0 0 . . . 0
0 0 0 0 0 0 0 u1 0 . . . 0
0 0 0 0 0 0 0 0 u1 . . . 0
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 0 . . . u1



(16)

B admits 17 eigenvalues λ1−17 whose expressions are given as follows

λ1−13 = u1,

λ14 = u1 −
√

Z1 + Z2

λ16 = u1 −
√

Z1 − Z2

λ15 = u1 +
√

Z1 + Z2

λ17 = u1 +
√

Z1 − Z2

, with



Z1 =
1
2 (a2

0 + a2
s + a2

γ + a2
α + a2

β),

Z2 =
√

Z2
1 − a2

β(a
2
0 + a2

α + a2
s),

a0 =
√
ρW ′′(ρ), as =

√
4
3 c2

s

aα =
η

ρ
√
α
, aβ =

√
γ
βρ
, aγ =

√
γ
ρ

p2
1

(17)

In these expressions, a0 will be referred to as the adiabatic sound speed as in the Euler subsystem in equa-
tions (1), even if the definition itself only holds in the convex regions of W(ρ). as is related to the shear
sound speed cs, while aα, aβ and aγ are of dispersive origin. More precisely, aα and aβ can be seen as relax-
ation wave speeds, while aγ can be regarded as a characteristic speed of capillary nature. As is typically the
case for hyperbolic systems with stiff relaxation terms, the characteristic speeds listed above are not repre-
sentative of the sound speed in the medium. Indeed, they contain additional contributions of dispersive and
viscous nature, that are nevertheless modeled by waves propagating at fast, yet bounded velocities. In order
to show that this system is hyperbolic, let us first prove that all the eigenvalues are real for a reasonable
choice of the parameters, regardless of the convexity of F. It suffices to prove that Z1 ≥ 0,Z2 ≥ 0 and that
Z1−Z2 ≥ 0. Clearly, it is enough to choose, for example, the relaxation parameters α and/or β small enough
such that a2

0 + a2
α + a2

β > 0. More precisely, choosing the penalty parameters α and/or β in the augmented
Lagrangian approach small enough allows to restore hyperbolicity of the system even in regions where the
square of the sound speed a2

0 = ρW ′′(ρ) becomes negative in the case of non-convex equations of state, like
the van der Waals equation used in this paper. For a2

0 + a2
α + a2

β > 0 it follows trivially that both Z1 ≥ 0 and
Z1 − Z2 ≥ 0. Furthermore, basic algebra allows to rewrite Z2 in the form

Z2 =

√
(Z1 − a2

β)
2 + a2

βa
2
γ ≥ 0,
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thus the system of equations (8) accounting for the cleaning (12) is at least weakly hyperbolic under the
previous considerations. Besides, it is possible to compute a full basis of right eigenvectors, collected below
as the columns of the following matrices, indexed in the same order as their corresponding eigenvalues

R1−17 =



0 0 0 0 0 0 0 0 0 r1 r1 −2r1 r2 ρ ρ ρ ρ
0 0 0 0 0 0 0 0 0 0 0 0 0 −r+3 −r−3 r+3 r−3
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 r+4 r−4 −r+4 −r−4
0 0 0 0 0 0 0 0 0 0 0 0 0 r−5 −r+5 r−5 −r+5
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


where auxiliary quantities were introduced to lighten the expressions, and which are all given below

r1 =
ρa2

s

2(a2 + a2
α)
, r2 =

2η − ρ
αρ(a2 + a2

α)
, r±3 =

√
Z1 ± Z2, r±4 =

√
Z1 ± Z2(Z1 − Z3)

Z3 ± Z2
p1, r±5 =

(Z2 ± Z4)
Z3 − Z4

p1

Z3 =
1
2

(a2
0 + a2

s + a2
α + a2

γ − a2
β), Z4 =

1
2

(a2
0 + a2

s + a2
α − a2

γ − a2
β)

The eigenvectors R1−13 associated to the transport eigenvalue u1 are trivially linearly independent. However,
a similar conclusion is less straightforward for R14−17. In fact, it is more convenient to discuss two separate
cases depending on whether Z2 is equal to zero or not. The condition Z2 = 0 is met if and only if the
equalities aγ = 0 and a2

β = a2
0 + a2

s + a2
α are simultaneously satisfied. In terms of the models’ parameters this

is equivalent to

p1 = 0, ρW ′′(ρ) +
4
3

c2
s +

η

ρα
=

γ

βρ
. (18)

In the case Z2 > 0, the eigenvalues λ14−17 are all distinct. It ensues that the eigenvectors R1−17 are all
linearly independent and the system is therefore strongly hyperbolic. In the case Z2 = 0, the eigenvalues
λ14−17 are no longer distinct, as some of them merge as follows:

λ1−13 = u1, λ14,15 = u1 −
√

Z1, λ16,17 = u1 +
√

Z1. (19)

Nevertheless, one can still compute a linearly independent basis of eigenvectors for the matrix B(Q) where
p1 and γ

βρ
are a priori replaced according to their respective values given in (18). This allows to obtain the

8



following matrix of eigenvectors

R′1−17 =



0 0 0 0 0 0 0 0 0 r1 r1 −2r1 r2 ρ 0 ρ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −aβ 0 aβ 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 aβ 0 −aβ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


which are always linearly independent given that

det(R′1−17) = −4ρa2
β(1 +

as

(a + aα)
) < 0. (20)

Thus, the system of equations (8) with GLM curl cleaning (12) is always hyperbolic in one dimension of
space, provided that the parameters α and β are taken such that a + aα + aβ > 0.

2.3.2. Multidimensional analysis
A thorough analysis of hyperbolicity in three space dimensions is by no means trivial. Therefore,

we shall consider a slightly simplified version for which it is possible to recover meaningful informa-
tion on the eigenstructure. The geometric properties of our system, in particular its invariance by rota-
tion, allows to reduce the task of checking multidimensional hyperbolicity to the one dimensional case
where all variables depend only on the space coordinate x and the time t, but all the components of the
vector fields are kept [33]. Under the same notations as in the previous subsection, this allows us to
cast the system into the quasilinear form (15) where the vector of primitive variables is now given by
Q = (ρ, u1, u2, u3, η,w, p1, p2, p3, A11,A22, A33, ψ1 , ψ2, ψ3, A12, A13, A21, A23, A31, A32)T . For the purpose of
our analysis, we shall linearize the system around a reference state Q0 such that A = I and p = (p1, 0, 0)T .
The system matrix B(Q0) under these considerations, can be written in a block from as follows

B(Q0) =

 B1 C1 C2
O4,9 B2 O4,8
O8,9 O8,4 I8

 (21)

9



where the matrices In and On,m denote the n × n identity matrix and the n × m zero matrix respectively and
the blocks B1, B2, C1 and C2 are defined below

B1 =



u1 ρ 0 0 0 0 0 0 0
a2
α+a2

0
ρ

u1 0 0 4c2
s

3 0 0 0
a2
γ

p1

0 0 u1 0 0 c2
s 0 0 0

0 0 0 u1 0 0 c2
s 0 0

0 1 0 0 u1 0 0 0 0
0 0 1 0 0 u1 0 0 0
0 0 0 1 0 0 u1 0 0
0 0 0 0 0 0 0 u1 −a2

β

0 p1 0 0 0 0 0 −1 u1


, B2 =


u1 0 −bc 0
0 u1 0 bc

−
bcγ
ρ

0 u1 0
0 bcγ

ρ
0 u1

 .

C1 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
a2
γ

p1
0 0 0

0
a2
γ

p1
0 0

0 0 0 0
0 0 0 0
0 0 0 0


, C2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ρ−2η
αρ2 −

2c2
s

3 0 0 −
2c2

s
3 0 0 0

0 0 c2
s 0 0 0 0 0

0 0 0 c2
s 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


By virtue of the block decomposition (21), the eigenvalues of B(Q0) can be seen as the union of eigenvalues
for each of the blocks B1, B2 and I8 and which are regrouped here, under the previous notations

λ1−9 = u1,

λ10−11 = u1 + cs,

λ12−13 = u1 − cs,
,

λ14−15 = u1 − ac,

λ16−17 = u1 + ac,


λ18 = u1 −

√
Z1 + Z2

λ19 = u1 −
√

Z1 − Z2

λ20 = u1 +
√

Z1 + Z2

λ21 = u1 +
√

Z1 − Z2

(22)

The characteristics λ1−9 correspond to passive transport, λ10−13 correspond to the shear waves, λ14−17 rep-
resent the GLM curl-cleaning waves where the cleaning speed is given by ac =

√
γ
ρ
bc and λ17−21 are the

longitudinal characteristic speeds and which in this case contain the main couplings between the viscous and
dispersive effects as well as the pressure waves. The corresponding eigenvectors are given below separately
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for each set of eigenvalues

R1−9 =



0 0 0 r1 0 0 r1 r2 −r1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0



,R10−13 =



0 0 0 0
0 0 0 0
0 cs 0 −cs

cs 0 −cs 0
0 0 0 0
0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



,

R14−17 =



0 0 0 0
0 0 0 0
0 −r6ac 0 −r6ac

r6ac 0 r6ac 0
0 0 0 0
0 r6 0 −r6
−r6 0 r6 0
0 0 0 0
0 0 0 0

0
√

ρ
γ

0 −

√
ρ
γ

−

√
ρ
γ

0
√

ρ
γ

0

0 1 0 1
1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



, R18−21 =



r+7 r+7 r−7 r−7
−r+8 r+8 r−8 −r−8

0 0 0 0
0 0 0 0
r+9 r+9 r−9 r−9
0 0 0 0
0 0 0 0

aβ2

r+3
−

aβ2

r+3

aβ2

r−3
−

aβ2

r−3
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


where

r6 =
1

a2
c − cs2

√
γ

ρ
p1, r±7 =

ρ

p1

Z2 ± Z4

Z1 + Z4
, r±8 =

1
p1

Z2 ± Z3
√

Z1 ± Z2
, r±9 =

1
p1

Z4 ± Z2

Z1 + Z4
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The eigenvectors R1−17 are clearly linearly independent. Concerning R18−21, both the eigenvectors and their
corresponding eigenvalues show a very similar structure to the one-dimensional case. Hyperbolicity follows
by virtue of the same analysis.

2.4. Dispersion relation
For systems with inherent dissipation and dispersion, it is fundamental to compute the dispersion rela-

tion as it assesses how waves propagate and decay as a function of the wavelength. For that, we linearize
equation (15) around an equilibrium state Q0 defined by ρ = η = ρ0, p = 0, u = 0, A = I, w = 0 and ψ = 0,
and we look for harmonic plane wave solutions of the form Q = Q0 + Qϵei(kx−ωt), where i is the complex
unity, k is the wavenumber and ω is the complex frequency. In order to obtain the phase velocity and the
decay rate of the system, we define the auxiliary quantity z = ω/k, which for our system can be obtained as
a root of the equation

P(z) = det
(
B(Q0) +

i
k
∂S
∂Q
− z I

)
= 0. (23)

The phase velocity cp and the decay rate d are then obtained from z as

cp(k) = Re(z), d(k) = −k Im(z). (24)

For the hyperbolic NSK model, equation (23) admits 21 complex roots z1−21 and obtaining an explicit
expression for all of them is a rather arduous exercise of algebra. Nevertheless, we present hereafter an
exact expression for z1−17 and which write

z1−6 = 0, z7−8 = −
6i
kτ
,

z9−10 = −ac,

z11−12 = ac
,


z13−14 = −

3i
kτ −

√
c2

s −
9

k2τ2 ,

z15−16 = −
3i
kτ +

√
c2

s −
9

k2τ2

. (25)

The five remaining values z17−21 can be defined as the roots of a fifth degree polynomial P5(z) that remains
after division of (23) by the factors z − zk, k ∈ {1, 2, . . . , 16}, i.e.

P5(z) =
P(z)

16∏
k=1

(z − zk)
= 0. (26)

Nevertheless, although no explicit expression has been obtained, it is possible to solve the problem P5(z) = 0
numerically in order to obtain relevant information on their behavior. A plot of the phase velocities cp,17−21
and the decay rates d17−21 is given along their corresponding values for the original Navier-Stokes-Korteweg
equations in Figure 2. The dispersion relation of the original NSK system is recalled here

z1,2 = −
2iµk
3ρ
±

√
ρW ′′(ρ) +

(
γρ −

4µ2

9ρ2

)
k2, z3,4 = −

ikµ
ρ
, (27)

and from where we can recover the phase velocity c̃p = |Re(z1,2)| and the decay rate d̃ = −k Im(z1,2), which
will serve later as a reference. Note that large values of the viscosity µ may lead to the suppression of
dispersive effects in particular for µ ≥ 2

3

√
γρ3. The phase velocity plot in Figure 2 shows that out of the

roots z17−21, z18,20 are asymptotically equivalent to the Navier-Stokes-Korteweg system in the vicinity of
the long-wave limit k → 0. However, there exists necessarily a cut-off wavenumber, say kc, starting from
which, the curves begin to diverge from one another. This comes as no surprise since in the short-wave limit,
that is k → ∞, we have c̃p → ∞ whereas for a hyperbolic system of equations, phase velocities remain
bounded and converge to their corresponding characteristics in the same limit, thus giving a non-uniform
convergence. A similar behavior is observed for the decay rates, as d̃ is very well-captured by d18 and d20
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for the long waves up to kc. This threshold is expected to to increase in the stiff relaxation limits α → 0,
β → 0 and cs → ∞, thus expanding the region of correspondence of our model with the NSK equations to
higher frequencies. However, in the presence of multiple relaxations of different physical nature, it seems
necessary to impose a scaling of the governing relaxation parameters, as the analysis might otherwise lead
to an erroneous interpretation.
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Figure 2: Plot of the phase velocities cp17−21 (left) and the decay rates d17−21 along their counterparts for the Navier-Stokes-Korteweg
system. For both figures, a continuous brown line corresponds to the original NSK. The values of the parameters are α = 10−3,
β = 10−5, γ = 10−3, µ = 10−3, cs = 20, ρ = 1.8

As such, we base our scaling on the characteristic speeds, since they provide some insight into the
different velocities involved by the relaxation mechanisms and which we identified in equation (17) as aα,
aβ and as. The following scaling

β(α) = γα, cs(α) =

√
1
α

(28)

allows to reduce the relaxation to a one-parameter process and keeps the corresponding characteristics at
the same order of magnitude in the stiff relaxation limit α→ 0. In Figure 3 we compare the phase velocity
d20 and the decay rate d20 with the reference NSK values c̃p and d̃. The figure shows that for smaller values
of α, the region over which both the phase velocity and the decay rate correspond to those of the NSK
equations extends to higher values of k.
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Figure 3: Plot of the phase velocities cp20 (left) and the decay rate d20 for several values of α along their counterparts for the Navier-
Stokes-Korteweg system. For both figures, the dashed black line corresponds to the original NSK while the colored continuous lines
correspond to the hyperbolic approximation for different α. The remaining parameters are as follows γ = 10−3, µ = 10−3 and ρ = 1.8

3. Numerical method

The model we present in this paper is a first-order hyperbolic system of equations where non-conservative
terms and algebraic sources are present. Thus, in order to present the general framework for the numerical
solution, we consider the general form of the PDE to be solved

∂U
∂t
+ ∇ · F(U) + B(U) · ∇U = S(U). (29)

Here U ∈ Rm is the vector of conserved variables with m = 12+ 3d. The tensor F ∈ Rm×d contains the PDE
fluxes such that the kth column of F corresponds to the flux vector in the direction xk. The non-conservative
terms are written in the quasi-linear form B(U) · ∇U with B ∈ Rm×d and S ∈ Rm is the vector of source
terms. The numerical method used here, in its most general form, falls into the category of PNPM schemes
[42, 41, 50, 44, 12], which in general employ a combination of the discontinuous Galerkin framework with
finite volumes. The data is represented by polynomials of degree N while the fluxes are obtained from a
reconstruction by polynomials of degree M ≥ N. While in principle, one could use M > N, we will use
in the rest of the paper N = M, which makes the method a one-step fully discrete ADER discontinuous
Galerkin scheme , for which a detailed summary is given in the following sections.

3.1. One-step ADER discontinuous Galerkin methods
The approach we recall here finds its foundations in [45, 42] and differs from the classical ADER

approach forwarded by Toro and Titarev [74, 75, 76, 24] in the sense that the original approach of Toro
and Titarev makes use of the strong form of the governing PDE system and the Cauchy-Kowalevskaya
procedure in order to replace time derivatives by space derivatives, while the method used in this paper
employs a weak integral formulation of the PDE in space-time. The approach allows for the treatment of
stiff sources and is easily applicable to general nonlinear hyperbolic PDE systems. In all what follows, we
present the approach in two dimensions of space, in a format that is easily extendable also to three space
dimensions. The notation (x, y) will be used instead of (x1, x2) to ease notation. In general, we consider a
rectangular domain [−Lx/2, Lx/2] × [−Ly/2, Ly/2] discretized over a uniform Cartesian grid comprised of
Nx × Ny cells, each occupying a domain Ωi = [xi −

∆x
2 , xi +

∆x
2 ] × [yi −

∆x
2 , yi +

∆y
2 ], where (xi, yi) are the

coordinates of the ith cell’s barycenter. The mesh size is such that ∆x = Lx/Nx and ∆y = Ly/Ny.
In the framework of the ADER discontinuous Galerkin finite element approach, we assume that the

numerical solution to the PDE (29) belongs to the space of piece-wise polynomials of degree N, which are
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spanned by the basis functions φk(x, y), k ∈ [1, (N+1)2]. For simplicity, the basis functions are defined over
a fixed interval [0, 1] × [0, 1] and the position inside each cell is mapped to the unit square by considering
local coordinates (ξ, η) defined by x = xi −

∆x
2 + ξ∆x and y = yi −

∆y
2 + η∆y, where 0 ≤ ξ, η ≤ 1. For the

sake of simplicity, a slight abuse of notation will be used so that a given function f : (x, y) ∈ Ωi → R will
still be referred to as f : (ξ, η) ∈ [0, 1]2 → R regardless of which coordinates are used, and which shall
be unambiguously mentioned or given away by the integral boundaries. We proceed by assuming that the
numerical solution to the PDE (29) at a time tn, denoted by uh(x, y, tn), can be expanded in terms of the
basis functions in every cell Ωi as follows

uh(x, y, tn) = φk(x, y) ûn
k,i (30)

Note that the space dependence inside a cell is completely shifted on the basis functions φk. As for the
choice of the latter, we take an orthogonal nodal basis {φk}k∈{0,...,2N+1}, generated by the tensor product
{φk1φk2 }k1,k2∈{0,...,N} where {φkl }kl,∈{0,...,N} are Lagrange interpolation polynomials going through N + 1 Gauss-
Legendre quadrature nodes. In the framework of Discontinuous Galerkin methods, equation (29) is multi-
plied by a test function φk and integrated over a space-time control volume Ωi × [tn, tn+1] to obtain

tn+1∫
tn

∫
Ωi

φk

(
∂U
∂t
+ ∇ · F(U) + B(U) · ∇U

)
dΩ dt =

tn+1∫
tn

∫
Ωi

φk (S(U)) dΩ dt. (31)

Inside the control volume, we substitute U by the numerical solution, expanded as in (30). Since ûn
k,i are

constant within Ωi, integration by parts of the left-hand side allows to obtain
∫
Ωi

ϕkϕl dΩ

 (ûn+1
l,i − ûn

l,i

)
+

tn+1∫
tn

∫
∂Ωi

ϕk

(
F

(
q−h ,q

+
h

)
+D

(
q−h ,q

+
h

))
· n dS dt

−

tn+1∫
tn

∫
Ωi

∇ϕk · F(qh) dΩ dt +

tn+1∫
tn

∫
Ω◦i

ϕkB(qh) · ∇qh dΩ dt =
∫
Ωi

ϕkS(qh) dΩ dt, (32)

where qh is the space-time predictor, qh
+ and qh

− refer to its boundary extrapolated values from within Ωi

and Ω j, j being a generic index of a neighboring cell. Details on the computation of qh will be laid out in
the next subsection. n is the normal vector to the cell boundary ∂Ωi, pointing outwards. The intercell flux
is computed at the aid of the Rusanov approximate Riemann solver [77] as follows

F
(
q−h ,q

+
h

)
· n =

1
2

(
F(q+h ) + F(q−h )

)
· n −

1
2

smax I
(
q+h − q−h

)
, (33)

where smax = max
(∣∣∣λk(q+h )

∣∣∣ , ∣∣∣λk(q−h )
∣∣∣) is the maximum wave speed at the interface. For the non-conservative

product, a path-conservative method [28, 67] is employed here. In this setting, a linear path is chosen

Ψ(s,q+h ,q
−
h ) = q−h + s(q+h − q+h ), s ∈ [0, 1] (34)

so that the non-conservative terms reduce to the following expression

D(q−h ,q
+
h ) · n =

1
2

B̃ · (q+h − q−h ), with B̃ =
∫ 1

0
B(Ψ(s,q+h ,q

−
h )) · n dS (35)

where the B̃ is numerically integrated by using Gauss quadrature.
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3.2. Local space-time predictor

In order to compute the coefficients ûn
l,i from equation (32), it is required that the local space-time

predictor be computed. The latter is obtained as a solution of a weak local formulation of (29). We consider
here space-time basis functions θk, that are obtained as the tensor product θk(ξ, η, τ) = φk0 (τ)φk1 (ξ)φk2 (η),
of the same previously introduced Lagrange interpolation polynomials and τ is defined in the interval [0, 1]
similarly to ξ and η, as a local time coordinate so that for every t ∈ [tn, tn+1] we have t = tn + τ∆t. The
predictor qh is then sought in the form

qh(x, y, t) = θk(x, y, t)q̂k,i, (36)

as a weak solution to (29). Hence, the expansion (36) is inserted into the latter which is then multiplied by
a space-time basis function θk and integrated over Ωi × [tn, tn+1] yields

tn+1∫
tn

∫
Ωi

θk (Ut + ∇ · F(U) + B(U) · ∇U) dΩ dt =

tn+1∫
tn

∫
Ωi

θk (S(U)) dΩ dt. (37)

Integrating by parts only the term containing the time derivative, and taking into account that at time tn we
start from the state un

h, this allows to write

∫
Ωi

θk(x, y, tn+1)qh(x, y, tn+1) dΩ −
∫
Ωi

θk(x, y, tn)uh(x, y, tn) dΩ −

tn+1∫
tn

∫
Ωi

∂θk

∂t
qh dΩ dt

+

tn+1∫
tn

∫
Ωi

θk ∇ · F(qh) dΩ dt +

tn+1∫
tn

∫
Ω◦i

θkB(qh) · ∇qh dΩ dt =
∫
Ωi

θkS(qh) dΩ dt. (38)

By expanding the predictor as in (36) one obtains an algebraic equation for q̂, which is solved by a fixed
point iteration, the convergence of which was proven for the homogeneous nonlinear case in [18]. Once
the predictor is known, equations (32) allows to compute the polynomial coefficients ûn+1 in every cell, by
using Gaussian quadrature for the remaining integrals.

3.3. A posteriori subcell finite volume limiter

The numerical method presented before is high order accurate but linear in the sense of Godunov.
Therefore, according to the well-known Godunov theorem, it will in general produce spurious oscillations
at shock waves and other discontinuities. In [51, 79] a new a posteriori subcell limiter was introduced
for high order fully-discrete one-step ADER-DG schemes, based on the MOOD paradigm introduced in
[31, 39, 40] for finite volume schemes.

At the beginning of each time step, the unlimited scheme described in the previous section is run on
all cells in order to produce a so-called candidate solution, in the following called u∗h(x, tn+1). Then, a
posteriori, the candidate solution is checked against several numerical and physical detection criteria, like
the positivity of the density and of η and the absence of floating point errors (NaN). We furthermore require
that a discrete maximum principle (DMP) is fulfilled, see [51]. If any of these numerical or physical
detection criteria is violated inside a DG element, the element is marked as troubled cell and is scheduled
for the a posteriori subcell finite volume (FV) limiting described below.

The cells Ωi scheduled for a posteriori limiting are now split into (2N + 1)2 FV subcells, which are
denoted by Ωi,s with Ωi =

⋃
sΩi,s. This subdivision of a high order DG element into small subcells does

not reduce the time step of the DG scheme since the CFL number of explicit DG schemes scales with
1/(2N + 1), while the maximum Courant number of finite volume methods is unity. At time tn the discrete
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solution is represented in the finite volume subcells Ωi,s via piecewise constant cell averages, denoted by
ūn

i,s and which are obtained from the high order DG polynomials uh(x, tn) by simple averaging as

ūn
i,s =

1
|Ωi,s|

∫
Ωi,s

uh(x, tn)dx. (39)

These subcell averages are now either evolved in time at the aid of a second order MUSCL-Hancock-type
TVD finite volume scheme with minmod limiter, or at the aid of a third order ADER-WENO finite volume
scheme, see [51], which are also both predictor-corrector method and thus looks almost identical to the
ADER-DG scheme, apart from the necessary nonlinear reconstruction step. Another major difference is
that now the test function is unity, hence the volume integral over the flux term disappears, and the spatial
control volumes Ωi are replaced by the sub-volumes Ωi,s:

∣∣∣Ωi,s

∣∣∣ (ūn+1
i,s − ūn

i,s

)
+

tn+1∫
tn

∫
∂Ωi,s

(
G

(
q−h ,q

+
h

)
+D

(
q−h ,q

+
h

))
· n dS dt

+

tn+1∫
tn

∫
Ω◦i,s

(B(qh) · ∇qh) dx dt =

tn+1∫
tn

∫
Ωi,s

S(qh,∇qh) dx dt . (40)

Once the cell averages ūn+1
i,s of all subcells in Ωi have been computed according to (3.3), the limited DG

polynomial u′h(x, tn+1) at the new time is obtained via a constrained least squares reconstruction, requiring

1
|Ωi,s|

∫
Ωi,s

u′h(x, tn+1) dx = ūn+1
i,s ∀Ωi,s ∈ Ωi, (41)

and ∫
Ωi

u′h(x, tn+1) dx =
∑
Ωi,s∈Ωi

|Ωi,s|ūn+1
i,s . (42)

The meaning of constraint (42) is conservation of the solution within the element Ωi. In addition to the
expansion coefficients ûn+1

i,l of the limited DG polynomial, in all limited DG elements we also keep in
memory the finite volume subcell averages ūn+1

i,s , since they serve as initial condition for the subcell finite
volume limiter in the case when a cell is troubled also in the next time step, see [51]. For more details on
the a posteriori subcell FV limiter, the reader is referred to [51, 79, 47].

4. Numerical results

In all what follows, whenever the HNSK model is solved numerically, and unless stated otherwise in a
specific test description, the following variables will be by default initialized as follows at t = 0

A = I, η(x, 0) = ρ(x, 0), p(x, 0) = ∇ρ(x, 0), w(x, 0) = −ρdiv(u), ψ = 0. (43)

4.1. Convergence analysis in α for a static solution
Equilibrium solutions where both phases coexist can be obtained in one or several dimensions of space.

In the setting of the original NSK equations, a stationary solution corresponds to the balance of the pressure
gradient with the surface tension forces which results in the following ODE, resulting from the system (1)
at equilibrium

∇P(ρ) = γρ∇ ·
(
∇2ρ

)
. (44)
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Similarly, a stationary solution to the hyperbolic NSK equations satisfies the system

∇P(ρ) = γη∇ ·
(
∇2η

)
, γ∇2η =

1
γα

(
η

ρ
− 1

)
. (45)

Written in this form, equations (45) exhibit very close resemblance to the ODE (44), in the sense that the
same equilibrium between pressure and capillary effects is obtained, only with ρ substituted by η in the
surface tension terms. In order to demonstrate numerical convergence of the numerical solutions of (45)
to those of the original system (44), we seek here a non-constant equilibrium solution corresponding to a
phase transition between two bulk states ρL and ρV denoting liquid and vapor densities, respectively. A
possibility to obtain such an equilibrium is to solve numerically the following initial value problem

ρ′′′ = 1
γρ

P′(ρ)
ρx=0 = ρL,

ρ′x=0 = −ϵ

ρ′′x=0 = 0.

(46)

where ρL = 1.80714032732 and ϵ = 10−8 are prescribed. We use here a classical Runge-Kutta method
of order four (RK4) to solve the ODE with a step size of ∆x = 10−4 and a surface tension coefficient
γ = 10−3. Note that the behavior of the solution is extremely sensitive to the precision of these values, as
shown in Figure 4, where one can see that the number of digits taken in ρL drastically affects the shape of
the numerical solution. The phase portrait shows in particular that the vapor state ρL is located at a saddle
point which is particularly hard to reach by numerical integration.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2

ρ
[−

]

x[−]

pr=1
pr=3
pr=4
pr=10

Figure 4: Influence of the precision pr of the initial value ρL on the behaivor of the solution ρ(x) (left) and on the phase portrait (right)
for a fixed value of ϵ = 10−8. The profiles are obtained numerically using a RK4 scheme with dx = 10−4 and γ = 10−3. the inset in
the left figure corresponds to a zoom over the marked region around the angular point.

The same behavior is observed when solving the equivalent initial-value problem for our hyperbolic
system which in one dimension of space is given by

ρ′ = p
η
ρ+

α
η ρP′(ρ) ,

η′ = p,
p′ = 1

αγρ
(ρ − η),

ρx=0 = ηx=0 = ρL,

px=0 = −ϵ

(47)
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The numerical solution to the latter, for several values of α is given in Figure 5 along the corresponding
convergence Table 1. The variables ρ and p of the hyperbolic model are compared respectively with ρ and
∇ρ of the reference system. The table indicates a first-order convergence rate of the numerical solution in
all of the L2, L1 and L∞ norms.
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Figure 5: Comparison of the numerical 1-d static bubble solution of the initial-value problem (47) for different values of the penalty
parameter α (continuous lines) with the reference solution of the NSK system (46) (black dashed line).

α ϵL2 (ρ) ϵL1 (ρ) ϵL∞ (ρ) OL2 (ρ) OL1 (ρ) OL∞ (ρ)

10−1 2.83 × 10−1 1.11 × 10−1 1.04
10−2 3.24 × 10−2 1.19 × 10−2 1.30 × 10−1 0.94 0.97 0.90
10−3 3.23 × 10−3 1.18 × 10−3 1.29 × 10−2 1.00 1.00 1.00
10−4 3.26 × 10−4 8.30 × 10−5 9.06 × 10−4 1.15 1.15 1.15

α ϵL2 (p) ϵL1 (p) ϵL∞ (p) OL2 (p) OL1 (p) OL∞ (p)

10−1 4.54 2.01 14.76
10−2 6.35 × 10−1 2.59 × 10−1 2.29 0.85 0.88 0.80
10−3 6.34 × 10−2 2.59 × 10−2 2.29 × 10−1 1.00 1.00 0.99
10−4 4.44 × 10−3 1.81 × 10−3 1.59 × 10−2 1.15 1.15 1.15

Table 1: Convergence table of the numerical 1-d static bubble solution of the initial value problem (47) to that of the original NSK
system. Convergence is shown in the penalty parameter α. The columns indicate respectively the values of α, the absolute error in the
different norms ϵL2 , ϵL1 and ϵL∞ and their corresponding order of convergence respectively for the variables ρ then for p.

4.2. 1D travelling wave solutions

In order to obtain travelling wave solutions, we assume that every variable only depends on x and t by
means of a single variable ξ = x − st. This allows to obtain solutions that are propagated in time with a
constant speed s while maintaining their shape. Under this assumption, equation (1) reduces to the ODEρ

′′′ = 1
γρ

(
(P′(ρ) − (u − s)2)ρ′ − 4

3µ(u − s)
(
2 ρ′2

ρ2 −
ρ′′

ρ

))
u′ = s−u

ρ
ρ′

(48)

A thorough investigation of the behavior of the solutions as a function of γ, µ and s is out of the scope of this
work. Nevertheless, the reader is referred to [2], where possible profiles of Riemann problem solutions for
a simplified case are discussed, and to [37] for travelling wave solutions for the Navier-Stokes-Korteweg
system. In any case, for a system where viscosity and dispersion are present, profiles that are periodic,
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oscillatory or damped can be recovered by varying the viscosity µ, while keeping the remaining parameters
constant. Profiles obtained in this way are represented in Figure 6, along the corresponding phase portraits,
by taking for example the following initial condition

ρx=0 = 1.8, ρ′x=0 = −10−16, ρ′′x=0 = 0, ux=0 = 0 (49)

and solving the corresponding initial-value problem by using a RK4 scheme. The initial value of ρ′, while
small, is necessary to obtain a trivial constant state.
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Figure 6: Numerical travelling wave profiles (left) and their corresponding phase portraits (right) for the Navier-Stokes-Korteweg
system, for different values of µ, obtained by solving an initial-value problem using a RK4 scheme. Other parameters used here are
γ = 0.001, s = 1.

It is possible to compute equivalent solutions for our hyperbolic model. Alternatively, it seems interest-
ing to see how well our system responds if an exact traveling wave solution to the original NSK equation
is instead inserted as an initial condition. This will allow to verify how well a solution to the original NSK
system can be considered an approximate solution to our model and if its main features can be recovered.
For that we consider the following experiment. We take the exact solution to the IVP (48)-(49) and take it as
an initial condition for the hyperbolic NSK system, solved numerically by a P3P3 discontinuous Galerkin
method with a posteriori WENO limiting. The total computational domain is Ω = [0, 8], which is dis-
cretized on a uniform grid of Nx = 512 cells. The CFL number is set to 0.9. We assume the scaling (28)
for the relaxation parameters and take several values of α with a fixed value for the capillary coefficient
γ = 10−3 and the wave speed s = 1. As for the viscosity, we recall here that the GPR model does not
depend explicitly on µ but has rather an effective viscosity coefficient that is dependent on the relaxation
characteristic time τ as well as the shear velocity cs as well as a reference density ρ0. Therefore, in all what
follows, whenever we need to prescribe an effective viscosity coefficient, we shall impose the shear velocity
cs and adjust the timescale accordingly to recover the sought value of µ. In the following simulations for
travelling wave solutions, the shear velocity will be taken as cs = 10. The value of the reference density
will be fixed to ρ0 = 1 throughout the following experiments. Thus, for the travelling wave solutions we
consider here, we consider two values of the effective velocities given by µ = 10−2 and µ = 10−1, and which
correspond respectively to a damped wave and an oscillatory wave-train. The results, which are shown
in Figures 7 and 8, show that there is a good agreement between the exact solution and the approximate
solution for low values of the penalty parameter α. Perturbations in the solution become noticeable when
α is fairly high for both chosen profiles. This experiment shows that for small enough α, travelling wave
solutions to the original NSK system can be considered approximate travelling wave solutions to our new
hyperbolic model.
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Figure 7: Numerical solution to the hyperbolic NSK system obtained by a P3P3 discontinuous Galerkin scheme, for an exact oscillatory
travelling wave of the original NSK system for α = 10−1, 10−2, 10−3 and under the scaling (28). The surface tension coefficient is
γ = 10−3 and the effective viscosity coefficient is µ = 0.01. The wave speed is s = 1. The total domain is [0, 8], discretized over
Nx = 512 cells. The solution is displayed at t = 2.
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Figure 8: Numerical solution to the hyperbolic NSK system obtained by a P3P3 discontinuous Galerkin scheme, for an exact damped
travelling wave of the original NSK system for α = 10−1, 10−2, 10−3 and under the scaling (28). The surface tension coefficient is
γ = 10−3 and the effective viscosity coefficient is µ = 0.1. The wave speed is s = 1. The total domain is [0, 8], discretized over
Nx = 512 cells. The solution is displayed at t = 2.

However, since these solutions are not exact solutions to the HNSK model, a convergence table cannot
be obtained, as the relaxation error would set the threshold. Therefore, we have also computed an exact
travelling wave solution in the dissipationless case by computing the ODE for the HNSK model and which
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writes

ρ′ = f (η, ρ, u, p) (50a)

u′ =
s − u
ρ

f (η, ρ, u, p) (50b)

η′ = p (50c)

p′ =
1−η/ρ
α
+ β(u − s)2 p f (η, ρ, u, p)
βρ(u − s)2 − γ

(50d)

where f (η, ρ, u, p) =
((2η − ρ)/ρ − γ((ρ − η)/ρ)/(βρ(u − s)2 − γ))p

η2/ρ2 + α(P′(ρ) − (u − s)2 + γβ(u − s)2 p2/(βρ(u − s)2 − γ))

Solving this ODE allows to obtain a reference travelling wave solution, for which we could draw the
following convergence table.

Table 2: Numerical convergence table for the traveling wave solution (50) using an ADER-DG PNPM schemes with a A posteriori
WENO limiting in one dimension of space. Nx denotes the number of mesh points. The columns refer to the L2 norms of the error
with respect to the exact solution and their corresponding convergence order O2 for indicative variables.

Nx ϵL2 (ρ) ϵL2 (u) ϵL2 (η) ϵL2 (w) ϵL2 (p) OL2 (ρ) OL2 (u) OL2 (η) OL2 (w) OL2 (p)

P2P2
16 1.69 × 10−3 5.98 × 10−3 1.69 × 10−3 2.78 × 10−1 7.45 × 10−2

32 6.44 × 10−4 7.58 × 10−4 6.38 × 10−4 6.84 × 10−2 3.61 × 10−2 1.40 2.98 1.40 2.02 1.05
64 1.24 × 10−4 1.53 × 10−4 1.22 × 10−4 1.19 × 10−2 4.87 × 10−3 2.37 2.31 2.38 2.52 2.89

128 1.57 × 10−5 2.76 × 10−5 1.54 × 10−5 1.86 × 10−3 3.88 × 10−4 2.99 2.47 2.99 2.68 3.65
P3P3

16 1.73 × 10−3 4.06 × 10−3 1.72 × 10−3 3.19 × 10−1 8.50 × 10−2

32 1.48 × 10−4 4.53 × 10−4 1.47 × 10−4 3.17 × 10−2 7.09 × 10−3 3.54 3.16 3.55 3.33 3.58
64 2.72 × 10−6 8.89 × 10−6 2.66 × 10−6 4.52 × 10−4 2.04 × 10−4 5.77 5.67 5.79 6.13 5.12

128 3.37 × 10−8 4.16 × 10−7 3.20 × 10−8 8.71 × 10−6 3.17 × 10−6 6.33 4.42 6.38 5.70 6.00
P4P4

16 6.00 × 10−4 1.82 × 10−3 5.93 × 10−4 1.59 × 10−1 3.93 × 10−2

32 5.76 × 10−6 1.09 × 10−5 5.59 × 10−6 7.98 × 10−4 4.32 × 10−4 6.70 7.38 6.73 7.64 6.51
64 3.53 × 10−7 6.93 × 10−7 3.43 × 10−7 4.48 × 10−5 1.79 × 10−5 4.03 3.98 4.03 4.16 4.60

128 1.12 × 10−8 3.35 × 10−8 1.10 × 10−8 1.26 × 10−6 3.70 × 10−7 4.97 4.37 4.96 5.15 5.59
P5P5

5 1.14 × 10−2 1.87 × 10−2 1.87 × 10−2 1.08 × 10−0 4.38 × 10−1

10 1.59 × 10−3 5.87 × 10−3 1.57 × 10−3 5.20 × 10−1 1.25 × 10−1 2.84 1.67 3.57 1.06 1.81
20 3.60 × 10−5 8.36 × 10−5 3.55 × 10−5 8.32 × 10−3 1.94 × 10−3 5.47 6.13 5.47 5.97 6.01
40 6.26 × 10−7 1.88 × 10−6 6.18 × 10−7 1.33 × 10−4 2.64 × 10−5 5.85 5.47 5.84 5.97 6.20

4.3. 2D stationary bubble
In multiple dimensions of space, static solutions of interest generally display radial symmetry. Thus,

it would be more convenient to consider an appropriate system of coordinates in this case which are polar
coordinates for d = 2 and spherical coordinates for d = 3. Under these assumptions, the ODE (44) for the
static NSK system can be cast into the form

∂ρ

∂r3 +
d − 1

r
∂ρ

∂r2 −

(
d − 1

r
+

1
γρ

P′(ρ)
)
= 0 (51)

to which corresponds the following ODE for our hyperbolic model, written in polar coordinates as

ρ′ =
p

η
ρ
+ α

η
ρP′(ρ)

, η′ = p, p′ = −
d − 1

r
p −

1
αγρ

(ρ − η). (52)

Similarly to the 1D case, we are seeking non-constant equilibrium solutions and we consider an initial-
value problem with the following possible initial conditions, corresponding to a droplet or a bubble at rest,

22



respectively Droplet: ρr=0 = 1.823, ηr=0 = ρ + ϵ1, pr=0 = 0,
Bubble: ρr=0 = 0.310, ηr=0 = ρ + ϵ2, pr=0 = 0,

(53)

where ϵ1 = −9.05876663682 × 10−8 and ϵ2 = 1.69493835634 × 10−10 are necessary perturbations in order
not to obtain a constant equilibrium solution. Once again, the solution is highly sensitive to the accuracy of
these perturbations. The values of the initial densities are taken in the vicinity of the Maxwell states ρM

L and
ρM

V for the liquid and vapor phase, respectively. The density in the surrounding state, farther from the center,
is determined such that the chemical potential is the same in both phases. Solving the ODE for r ∈ [0,R]
allows to obtain the radial profiles of Figure 9. These solutions are then used as an initial condition for our
ADER-DG code. In our case, we use R = 0.7. However, the total domain used for the 2D simulation is
[−1, 1] × [−1, 1] which extends further than the provided radial solution. Therefore, in this case, and for√

x2 + y2 > R, the initial condition is continued with a constant state matching the values at r = R, except
for p which is taken identically null. For this test, we use a Cartesian mesh of 144×144 cells and the values
of the parameters are γ = 10−3, µ = 10−2, cs = 10, α = 10−2, β = 10−3 and bc = 500. The final time is
t = 10. The results are shown in Figure 10 and along a radial cut in Figure 11.
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Figure 9: ODE solution of equation (52) in polar coordinates for d = 2 with the initial conditions (53) and a Van der Waals pressure
law (6)-(7). The dashed lines represent the Maxwell states ρM

L and ρM
V . The penalty parameter is taken equal to α = 10−2.

t=10t=0 t=0 t=10

Figure 10: Numerical results of the hyperbolic NSK system obtained by an ADER-DG P3P3 scheme with a posteriori WENO
limiting, for the reference stationary solutions displayed in Figure 9. The total computational domain is [−1, 1] × [−1, 1] discretized
over a Cartesian mesh of 144 × 144 cells. Parameters used here are γ = 10−3, µ = 10−2, cs = 10, α = 10−2, β = 10−3 and bc = 500.
The solution is displayed at t = 10.
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Figure 11: Radial cut of the stationary numerical solutions of Figure 10, at t = 10 compared with their respective initial conditions for
both ρ (left) and p (right).

4.4. 2D stationary bubble: Mesh convergence analysis

In the previous section we extrapolated the initial condition to a bigger computational domain with a
constant state. While the results are stable and satisfactory, the error induced by the extrapolation puts
a threshold to the numerical error and which cannot be overlooked in a mesh convergence analysis. An
alternative solution is to use an initial condition provided by a boundary-value solver instead of a Cauchy
problem. This allows to obtain more accurate benchmarking solutions. For what follows, the numerical
resolution of the boundary value problems is done by using the COLNEW BVP solver [4, 5, 7], which
was also used in [37]. In order to verify whether the provided solutions are also coherent with the original
Navier-Stokes-Korteweg system, two different boundary value problems are solved, for the ODEs (51) and
(52), for which the boundary values are given respectively as follows

(NSK):


ρ(r = 0) = 1.825
ρ′(r = 0) = 0
ρ(r = 1) = 0.33282591

, (HNSK):


ρr=0 = 1.825
p(r = 0) = 0
p(r = 1) = 0.

(54)

The initial guess for ρ is given in the following form

ρ(r) = ρv +
ρl − ρv

2
erfc((r − R)/ϵ) (55)

where ρl = 1.825, ρv = 0.34, R = 0.302 and ϵ = 0.05. The remaining variables for the HNSK are initialized
as η = ρ and p = η′. Solving these BVPs for both the NSK and the HNSK system for different values of α
and for γ = 10−3 yields the following results
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Figure 12: Boundary value problem solution for both NSK system and the HNSK system. The left figure shows the radial density
profile while the right one shows p for the HNSK compared with ρ′ for the NSK system. Different values of α are used and the surface
tension coefficient is taken as γ = 10−3.

Figure 12 shows a good agreement between the original model and our hyperbolic approximation.
Lower values of the penalty parameter α show a better accuracy, as expected. We then take the solution for
α = 10−3 and use it as an initial condition into our ADER-DG code and the numerical error is reported for
different mesh resolutions as well as different orders of the numerical method. The results are summarized
in Table 3. In the scope of this mesh convergence analysis, the limiter is disabled in order to speed up
computations. The parameters used for this test are γ = 10−3, α = 10−3, β = 10−3, cs = 0, bc = 10. The
final time is t = 0.025.

Table 3: Numerical convergence table for a stationary bubble solution , using ADER-DG PNPN schemes in two dimensions of space.
The mesh is comprised of Nx × Ny cells where Nx is indicated and Ny = Nx. The columns refer to the L2 norms of the error with
respect to the exact solution and their corresponding convergence order O2 for indicative variables.

Nx ϵL2 (ρ) ϵL2 (u) ϵL2 (η) ϵL2 (w) ϵL2 (p) OL2 (ρ) OL2 (u) OL2 (η) OL2 (w) OL2 (p)

P2P2
50 9.12 × 10−4 6.63 × 10−2 1.32 × 10−3 2.00 × 10−0 1.22 × 10−1

75 5.05 × 10−4 2.45 × 10−2 5.86 × 10−4 1.17 × 10−0 2.86 × 10−2 1.46 2.46 2.00 1.34 3.57
100 3.09 × 10−4 1.06 × 10−2 3.26 × 10−4 6.31 × 10−1 2.60 × 10−2 1.70 2.90 2.03 2.13 0.33
200 5.08 × 10−5 1.26 × 10−3 5.19 × 10−5 7.30 × 10−2 6.77 × 10−3 2.61 3.07 2.65 3.11 1.94

P3P3
50 2.06 × 10−4 8.60 × 10−3 2.29 × 10−4 4.84 × 10−1 1.59 × 10−2

75 6.30 × 10−5 1.59 × 10−3 6.26 × 10−5 1.29 × 10−1 9.17 × 10−3 2.92 4.17 3.19 3.26 1.35
100 2.04 × 10−5 4.03 × 10−4 1.96 × 10−5 3.80 × 10−2 4.26 × 10−3 3.92 4.76 4.04 4.24 2.67
125 7.12 × 10−6 1.47 × 10−4 6.89 × 10−6 1.16 × 10−2 1.92 × 10−3 4.71 4.53 4.68 5.31 3.57

P4P4
50 5.99 × 10−5 1.20 × 10−3 5.60 × 10−5 1.43 × 10−1 1.15 × 10−2

100 2.68 × 10−6 3.56 × 10−5 2.54 × 10−6 3.45 × 10−3 7.24 × 10−4 4.48 5.08 4.46 5.37 4.00
125 9.47 × 10−7 1.19 × 10−5 8.90 × 10−7 1.02 × 10−3 2.65 × 10−4 4.66 4.90 4.70 5.48 4.50
150 3.82 × 10−7 4.83 × 10−6 3.66 × 10−7 3.47 × 10−4 1.06 × 10−4 4.97 4.96 4.87 5.90 5.02

P5P5
25 4.11 × 10−4 1.17 × 10−2 4.06 × 10−4 1.15 × 10−0 6.67 × 10−2

50 6.62 × 10−6 1.15 × 10−4 6.37 × 10−6 1.25 × 10−2 1.52 × 10−3 5.96 6.66 5.99 6.53 5.46
75 8.48 × 10−7 1.15 × 10−5 8.39 × 10−7 9.73 × 10−4 2.06 × 10−4 5.07 5.68 5.00 6.30 4.93

100 1.46 × 10−7 1.88 × 10−6 1.41 × 10−7 1.25 × 10−4 4.54 × 10−5 6.11 6.29 6.19 7.13 5.25

4.5. Ostwald ripening
4.5.1. One dimensional case

In this part, we are considering a dynamical case. Consider an initial condition where several vapor
regions, to which we can refer to as bubbles, are surrounded by a liquid phase. In the setting of the Navier-
Stokes-Korteweg model, precisely due to the gradient term, this configuration will evolve towards a single
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bubble, in an attempt to minimize the density gradients and thus reach an energetically more stable profile
for the same mass. If the bubbles are not in the close vicinity of one another, the process by which they
combine is not coalescence. Instead, smaller bubbles shrink and release their ’mass’ throughout the medium
and which is then gradually absorbed by larger bubbles. The process continues until only one bubble
remains. This is called Ostwald ripening and was also studied in [29, 59]. We consider the following initial
condition for ρ and u

ρ(x, 0) = ρl +
ρl − ρv

2

nb∑
k=1

(
tanh

( x − xk − rk

ϵ

)
− tanh

( x − xk + rk

ϵ

))
, u(x, 0) = 0 (56)

where ρl = 1.8, ρv = 0.3 represent the liquid density and vapor density, respectively, nb is the number of
bubbles, each of which is defined by a center position xk and a radius rk and ϵ is a parameter that controls
the initial thickness of the transition region. The final state only depends on the intrinsic properties of the
system and mainly on the surface tension coefficient γ. We consider two bubbles at the positions x1 = 0.75,
x2 = 1.25 with radii r1 = 0.15 and r2 = 0.05, respectively. The total domain Ω = [0, 2] is discretized via
Nx = 200 cells. The surface tension coefficient is γ = 10−3, the effective GPR viscosity is µ = 10−2 with a
shear velocity of cs = 10. The relaxation parameters are α = 10−2 and β = 10−5. The CFL number is set to
0.9. The numerical solution obtained by an ADER-DG P3P3 scheme with a posteriori WENO limiting is
given in Figure 13 at different times.
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Figure 13: Density profile for the 1D Ostwald ripening simulation plotted at six different times t ∈ {0, 0.1, 0.3, 1, 5, 20} obtained by
an ADER-DG P3P3 scheme with a posteriori WENO limiting. Parameters used for this simulation are γ = 10−3, µ = 10−2, cs = 10,
α = 10−2 and β = 10−5. The domain is discretized over Nx = 200 cells.

The boundary conditions used for this simulation are periodic. In order to re-verify that convergence in
both the mesh and in the relaxation parameters persist for a solution that exhibits more complex dynamics,
Figure 14 shows a comparison of our results with two other numerical solutions, one obtained for a finer
grid (Nx = 1024)and the other for stiffer relaxation parameters (α = 10−3, β = 10−6). The comparison is
done at instants close to the vanishing of the small bubble, since more density and velocity fluctuations are
observed around these instants. The figure shows good convergence properties in the sense that differences
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are hardly discernible between the three curves, showing that the time scale and the dynamics are well-
established and not very sensitive to the choice of parameters. Finally, in Figure 15 we plot the evolution of
the total kinetic energy to show that the latter is decaying over time, as it should be in a dissipative system,
and that the presented numerical solution is evolving towards a stationary state.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

ρ
[−

]

x[−]

Nx = 200, α = 10−2

Nx = 1024, α = 10−2

Nx = 200, α = 10−3t = 0.1
0

0.5

1

1.5

2

0 0.5 1 1.5 2

ρ
[−

]

x[−]

Nx = 200, α = 10−2

Nx = 1024, α = 10−2

Nx = 200, α = 10−3t = 0.3

Figure 14: Comparison of our numerical result (blue continuous line) with two reference solutions, one corresponding to a finer grid of
Nx = 1024 cells (red dashed line) while the other corresponds to the same mesh but stiffer relaxation parameters α = 10−3, β = 10−6.
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Figure 15: Time evolution of the kinetic energy over time for the Ostwald ripening test case in 1D.

4.5.2. Two-dimensional case
Ostwald ripening in two or higher dimensions follows the same principles as the one dimensional coun-

terpart. However, compared to the latter, an additional complexity to be aware of is the non-violation of
curl-involution constraints, for which the GLM curl-cleaning procedure is specifically implemented through
equations (12). For this test case we consider an initial condition with a number of bubbles nb = 20, which
is prescribed in Cartesian coordinates as follows

ρ(x, 0) = ρl +
ρl − ρv

2

nb∑
k=1

(
tanh

(ck − rk

ϵ

)
− tanh

(ck + rk

ϵ

))
, u(x, 0) = 0, (57)

where ck =
√

(x − xk)2 + (y − yk)2 can seen as the radius in polar coordinates, defined locally for each
bubble with their center (xk, yk) as the pole, rk is the approximate radius of the bubble k and ϵ controls
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the thickness of the transition region. The value of ϵ affects the dynamics of the bubbles. In particular,
if it is higher (resp. lower) than the equilibrium value, this will initiate mass transfer in the vicinity of
bubbles interfaces, in order to sharpen (reps. thicken) the latter, generating unnecessary perturbations in the
medium. A good estimate was provided in [59] where they take ϵ = 2

√
γ and which we will consider for

our simulations. We consider a computational domain of [−1.1, 1.1]×[−1.1, 1.1], discretized over 216×216
cells. The positions and radii for the initial bubbles are given in the following Table 4

k 1 2 3 4 5 6 7 8 9 10

rk 0.20 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
xk 0.00 0.60 −0.75 −0.70 −0.40 −0.20 0.00 0.40 0.60 0.80
yk 0.00 0.60 0.00 0.60 −0.40 −0.80 0.60 −0.40 0.00 −0.40

k 11 12 13 14 15 16 17 18 19 20

rk 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
xk −0.80 −0.70 −0.50 −0.40 −0.40 0.35 −0.10 0.15 0.40 0.70
yk −0.80 −0.50 −0.70 0.20 0.80 0.30 −0.45 −0.55 −0.80 −0.70

Table 4: Radii and positions of the bubbles used for the initial condition (58) displayed in Figure 16.

t=0 t=0.3 t=1.2

t=2 t=4 t=10

Figure 16: Numerical result for the density ρ, obtained by a P3P3 scheme with a posteriori WENO limiting, for the Ostwald ripening
test case in two dimensions, plotted at several times t ∈ {0, 0.3, 1.2, 2, 4, 10}. Values used here are ρl = 1.8, ρv = 0.3, γ = 2.10−4,
α = 10−2, β = 10−5, cs = 10 and an effective viscosity of µ = 10−2. The cleaning parameter is taken as bc = 1200. The total domain
is Ω = [−1.2, 1.2] × [−1.2, 1.2] discretized over a 288 × 288 uniform grid. Boundary conditions are periodic.
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t=0 t=0.3 t=1.2

t=2 t=4 t=10

Figure 17: Numerical result for the magnitude of the gradient field p obtained in the same setting as the upper figure.

We take for this simulation initial densities in the vicinity of the Maxwell states ρl = 1.8 and ρv = 0.3.
As for the model parameters, we use γ = 2.10−4, α = 10−2, β = 10−5, cs = 10 and an effective viscosity
of µ = 10−2. The numerical result is plotted in Figures 16 and 17. The observed dynamics corresponds
qualitatively with what was observed previously in [37, 29, 59].

4.6. Cleaning analysis

4.6.1. Simplified testcase: Condensing bubble
In order to asses whether the GLM curl cleaning is contributing to the stability of the numerical solution,

a few tests have been run in order to quantify how curl errors are affected by the choice of the cleaning
parameter bc. We consider a simplified test case where a single bubble is taken in a medium, large enough
for it to completely condensate, so that only one phase remains at equilibrium. The expression of the initial
bubble is given in the same fashion as in (58) by

ρ(x, 0) = ρl +
ρl − ρv

2

(
tanh

( r − r0

ϵ

)
− tanh

( r + r0

ϵ

))
, u(x, 0) = 0. (58)

where the radius r0 = 0.10 and the interface thickness ϵ = 2
√
γ are initially prescribed. We take for

this simulation the values of ρl = 1.8 and ρr = 0.3, γ = 5.10−4, α = 10−2, β = 10−5, cs = 10 and
different values of the cleaning velocity, shown in Figure 19. The computational domain is taken as Ω =
[−0.5, 0.5] × [−0.5, 0.5] discretized over 64 × 64 cells. The typical timeline of the solution is plotted in
Figure 18 for bc = 100. Regardless of the chosen values, the dynamics of the solution are preserved, and
differences in the density plot are of indiscernible magnitude.
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t=0 t=0.4 t=0.6 t=10

Figure 18: Plot of the numerical solution obtained for the initial condition (58) with the above mentioned parameters. The result is
shown for bc = 100.
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Figure 19: Normalized L2 (left) and L∞ norms of the curl errors across the computational domain.

For this test, we plot the L2 and L∞ errors of ∇×p, normalized with respect to the magnitude of ∂p1/∂x
at time t = 0. The time evolution of these errors over time are reported in Figure 19. For this very simple
test, where the gradient field is of negligible magnitude in the long term, the GLM curl cleaning procedure
is in accordance with the expected result that curl errors are a decreasing function of the cleaning speed.

4.6.2. Non-condensing bubble
We consider now a similar initial condition to the previous one, where again a single bubble is taken in

the center of a square domain, but the domain is taken small enough to keep a two-phase configuration. The
main issue at hand in this test case respectively to the former is that high gradients of the density are present
at all times during the simulation. In order to further highlight this complication, a slightly sharper interface
will be considered as well, which is naturally be more prone to generating curl errors. For this simulation
we take a slightly larger bubble with r = 10, ρl = 1.8 and ρr = 0.3, γ = 2.10−4, α = 10−2, β = 10−5,
cs = 10 and different values of the cleaning velocity, shown on figure 19. The total domain is taken as
Ω = [−0.25, 0.25] × [−0.25, 0.25] and is discretized over 128 × 128 cells. Compared, to the previous test
case, a mesh refinement is necessary as sharper gradients are present in the solutions at all times and which
need to be well-resolved. Since the initial solution is not an exact stationary state, a decaying oscillation of
the bubble will be observed, until a stationary state is reached. As can be seen from the time evolution of
the curl errors, patterns emerge showing that curl errors gradually grow and then suddenly decay at almost
regular intervals in the first instants. Understanding these dynamics requires to investigate the dynamics of
the cleaning field ψ, whose growth is only fueled by the curl errors, as can be understood from equation
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(12). To that end, we show in Figure 21 a sequence of the numerical results for the magnitude of ψ3, for
several times taken in the vicinity of the first spike in the L2 error. The times at which these results are
taken, are marked in Figure 20.
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Figure 20: Left: Comparison of the time evolution of the normalized L2 curl errors for two simulations with cleaning (blue line) and
without cleaning (orange line). Right: A zoom on the first spike in the curl error. The marked dots correspond to times at which the
cleaning field is displayed in figure 22.

The numerical experiment shows that the use of GLM curl-cleaning allows to significantly reduce the
curl error and keep it from rising over time. As can be seen in Figure 20, in the absence of cleaning, curl
errors show a continuously growing tendency, while under cleaning, the error keeps oscillating around the
same order of magnitude. We presume that the oscillatory behavior is due to the dynamics of the curl
cleaning field ψ, which transports curl errors away in a Maxwell-type subsystem. The dynamics of the curl
cleaning field are shown in Figure 21. The times at which the cleaning field is displayed correspond to the
marked times in right part of Figure 20. One can see that curl errors accumulate in specific regions, which
actually correspond to the high-gradient transition separating both phases. Then, cleaning waves are emitted
from these regions and which spread the error over the domain, thus preventing further concentration of the
latter.

t=0.40 t=0.52 t=0.54t=0.50

Figure 21: Behavior of the magnitude of the cleaning field component ψ3 when accumulation of curl errors occurs.

4.6.3. Ostwald ripening
In a similar test case as the one presented in paragraph 4.5.2, we consider here a comparison for the

Ostwald ripening case, where less symmetry and more complicated dynamics are at work. We take the
same initial condition (58), with the values ρl = 1.8, ρv = 0.3, γ = 5.10−4, α = 10−2, β = 10−5, cs = 10
and an effective viscosity of µ = 10−2. Since we compare here two simulations with and without curl
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cleaning, the cleaning parameter is set as bc = 500 for the former and bc for the latter. The total domain is
Ω = [−1.2, 1.2] × [−1.2, 1.2] discretized over a 216 × 216 uniform grid. Boundary conditions are periodic.
The time evolution for the normalized L2 and L∞ norms of the curl errors is reported on figure 22.
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Figure 22: Comparison of the time evolution of the curl errors for two simulations with cleaning (blue line) and without cleaning
(orange line).

Similarly to the previous test cases, the curl error are of smaller scale when the curl cleaning is present,
and are kept at the same order of magnitude in the long term in contrast to the cleaning-less simulation
where errors continue to increase. The behavior of the curl errors when cleaning is present is also more
chaotic than in the previous tests, since the initial condition does not present any particular symmetries and
the overall dynamics are considerably more complex.

5. Conclusion

In this paper, a new first-order hyperbolic relaxation model for the Navier-Stokes-Korteweg equations
has been presented and has been solved numerically at the aid of high order ADER discontinuous Galerkin
finite element schemes with a posteriori subcell finite volume limiter. The new model is based on a com-
bination of the Godunov-Peshkov-Romenski model of continuum mechanics [70, 68, 48] and the extended
Lagrangian approach for nonlinear dispersive systems forwarded in [55, 35]. The model was shown to
reproduce the main features of the original NSK system at both the theoretical and practical level. In
particular, a linearized dispersion analysis allowed us to show that our model reproduces very well the
phase velocities and decay rates of the original NSK system for bounded wavelengths. Numerical solu-
tions were shown to converge in both the the relaxation limit and the mesh size and exact solutions to the
NSK system were shown to stable approximate solutions in our reformulation. There are many aspects
which can still be addressed in the setting of the provided model and which are left for future endeav-
ors. First, it seems interesting to substitute the GLM curl cleaning procedure used in this paper by using
a family of exactly curl-free schemes [14] that would reduce the curl errors to machine zero. It seems of
interest to further inspect the effectiveness of the curl-cleaning procedure and to compare it with exactly
structure-preserving schemes. Another interesting line of investigation will be the development of efficient
semi-implicit schemes [43, 54, 23, 11, 1, 38, 13, 73] in order to be able to address the low Mach number
limit of the equations, in which the maximum characteristic speed goes to infinity, thus making explicit
time-stepping highly inefficient and inaccurate. Future work will also concern the development of provably
thermodynamically compatible schemes for the new model presented in this paper, similar to those recently
forwarded in [21, 22, 19]. Finally, in order to properly address the sharp interface limit γ → 0, it seems
necessary to investigate whether suitable asymptotic-preserving schemes can be developed.
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Appendix A. Energy conservation

In order to prove energy conservation, it is more convenient to use conserved variables, for which the
following notations will be used

m = ρu, φ = ρη, ω = ρw. (A.1)

the total energy, expressed in these variables writes

E(ρ,m, φ,p, ω,A,ψ) =
1

2ρ
|m|2 +W(ρ)+

1
4

cs2devG : devG+
γ

2
|p|2 +

1
αρ

(ρ−φ/ρ)2 +
β

2ρ
ω2 +

ρ

2
|ψ|2 (A.2)

We will assume in this part that the cleaning has a rather generic form in order to show how a thermody-
namically compatible cleaning is obtained. We will assume in this context that ∇×p and ∇×ψ, that appear
in our evolution equations, are multiplied by two, a priori independent, functions of the density, ap and aψ
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respectively. Under all the previous notations, it is trivial to verify that HNSK system can be cast into the
following compact form

∂tρ + ∇ · (ρu) = 0, (A.3a)

∂tm + ∇ ·
(
u ⊗m + Ep ⊗ p + ρATEA

)
+ ∇P = 0, (A.3b)

∂tA + ∂x(A · u) +
(
∇A − (∇A)T

)
· u = −

3
τ

(detA)5/3 AdevG, (A.3c)

∂tφ + ∇ · (φu) =
ρ

β
Eω, (A.3d)

∂tp + ∂xp · u + (∂xu)T · p − ∇(ω/ρ) + ap(ρ)∇ × ψ = 0, (A.3e)

∂tω + ∇ ·

(
ωu −

γ

β
p
)
= −

ρ

β
Eφ, (A.3f)

∂tψ + ∂xψ · u − aψ(ρ)∇ × p = 0. (A.3g)

where P = ρEρ +m · Em +φEφ +ωEω, is the pressure expressed as a function of the total energy. To clarify
the convention of differential operators, for any column vector v and any matrix A we have

∂xv =
[
∂vi

∂x j

]
i j
, ∇A · v =

[
∂Aik

∂x j
u j

]
ik
, ∇ · v =

∂vi

∂xi
(A.4)

Now, we multiply every equation by its corresponding entropic variable, that is for every quantity Q we
multiply the corresponding evolution equation by ∂QE. This allows to write

Eρ ∂tρ + ρEρ∇ · (u) + Eρ∇(ρ) · u = 0, (A.5a)

Em · ∂tm + Em ·
(
(∇ · u) m + ∂xm u + ∇ ·

(
Ep ⊗ p − Σ

))
+ Em · ∇P = 0, (A.5b)

EA : ∂tA + EA : ∇Au + EA : A∂xu = −3
det(A)
ρτc2

s

5/3

EA : EA, (A.5c)

Eφ ∂tφ + Eφ∇φ · (u) + Eφφ∇ · (u) =
ρ

β
EφEω, (A.5d)

Eω ∂tω + Eω∇ω · u + Eωω∇ · u −
1
β
Eω∇ · Ep = −

ρ

β
EωEφ, (A.5e)

Ep · ∂tp + Ep · ∂xp · u + Ep · (∂xu)T · p −
1
β
Ep · ∇(Eω) + ap(ρ) Ep · ∇ × ψ = 0, (A.5f)

Eψ · ∂tψ + Eψ · ∂xψ · u − aψ(ρ) Eψ · ∇ × p = 0 (A.5g)

Summing these equations yields

∂tE +
(
Eρ∇ρ + (∂xm)T Em + Eφ∇φ + Eω∇ω + (∂xp)TEp + (∂xψ)TEψ + EA : ∇A

)
· u

+
(
ρEρ +m · Em + Eφφ + Eωω

)
∇ · u −

1
β

(Eω∇ · Ep + Ep · ∇(Eω))

+ ∇ ·
(
Ep ⊗ p − Σ

)
· u + ∇P · u + Ep · (∂xu)T · p + Tr(ET

AA∂xu)

− aψ(ρ) Eψ · ∇ × p + ap(ρ) Ep · ∇ × ψ = −3
det(A)
ρτc2

s

5/3

EA : EA (A.6a)
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which leads to

∂tE + ∇E · u + (P + E)∇ · u + ∇P · u − ∇ ·
(

1
β
EωEp

)
+ ∇ ·

(
(Ep ⊗ p − Σ)u

)
− Tr

(
Ep ⊗ p ∂xu

)
+ Tr (Σ ∂xu) + Ep · (∂xu)T · p + Tr(ET

AA∂xu)

− aψ(ρ) Eψ · ∇ × p + ap(ρ) Ep · ∇ × ψ = −3
det(A)
ρτc2

s

5/3

EA : EA (A.7a)

We recall that Σ = −ATEA = −E
T
A A. This allows to reduce the last expression to

∂tE+∇ ·

(
(P + E)u + (Ep ⊗ p − Σ)u −

1
β
EωEp

)
− aψ(ρ) Eψ · ∇ × p+ ap(ρ) Ep · ∇ ×ψ = −3

det(A)
ρτc2

s

5/3

EA : EA

(A.8)
The right-hand side of this equation is due to the inherent dissipation of the viscous stresses. In the frame-
work of the GPR model, this dissipative term can be balanced by entropy generation when a non-barotropic
equation of state is prescribed [48]. Besides, the are additional terms due to the cleaning procedure which
appear on the left hand-side. The GLM curl-cleaning is thus compatible with energy conservation, if and
only if these terms can be cast into conservative form. This allows to set a selection criteria for the arbitrary
coefficients ap and aψ. Indeed, by replacing Ep and Eψ by their values, these terms become

ρaψ(ρ)ψ · ∇ × p − γap(ρ)p · ∇ × ψ. (A.9)

One can choose for example aψ(ρ) = γbc/ρ and ap(ρ) = bc, where bc is a constant parameter allowing to
control the cleaning speed. This allows to cast the latter terms in conservative form as follows

γbc(ψ · ∇ × p − p · ∇ × ψ) = ∇ · (γap p × ψ) (A.10)

so that the total energy evolution equation becomes

∂tE + ∇ ·

(
(P + E)u + (Ep ⊗ p − Σ)u −

1
β
EωEp + γbc ψ × p

)
= −3

det(A)
ρτc2

s

5/3

EA : EA (A.11)

This choice of the functions ac and aψ was used throughout this paper.
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