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Diffusion equations

Many phenomena in nature are described by diffusion-type
equations

1 Fick’s second law for particle concentration

∂c

∂t
= div (D∇c)

2 Fourier’s law for heat conduction

∂θ

∂t
= div (K∇θ)

3 etc ...

Very ”simple” structure, compares well with experimental
observations.
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Heat conduction in an inviscid compressible flow

Generally described by Euler equation + Fourier’s law of heat
conduction

∂ρ

∂t
+ div (ρu) = 0, (1a)

∂ρu

∂t
+ div (ρu⊗ u+ p(ρ, η)I) = 0, (1b)

∂E

∂t
+ div (Eu+ p(ρ, η)u−K∇θ(ρ, η)) = 0. (1c)

System describes conservation of mass, momentum and total
energy.

Entropy satisfies Clausius-Duhem inequality

∂ρη

∂t
+ div

(
ρηu− K

θ
∇θ

)
=

K

θ2
||∇θ||2 ≥ 0.
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Objective

We would like to provide first-order hyperbolic alternative to the
Euler-Fourier system

∂ρ

∂t
+ div (ρu) = 0, (2a)

∂ρu

∂t
+ div (ρu⊗ u+ p(ρ, η)I) = 0, (2b)

∂E

∂t
+ div (Eu+ p(ρ, η)u−K∇θ(ρ, η)) = 0. (2c)
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Why are we doing this?

1 Restore the principle of causality:

information must not travel faster than light speed in vacuum.
(Trivially violated by Laplace operator)

2 Symmetric hyperbolic equations are locally well-posed.

3 Obtain an alternative description of known phenomena.

4 Chance it provides much easier/faster numerical simulations
(Very often the case, not always).
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Plan of presentation

1 Model Derivation

2 Model analysis and hyperbolicity

3 Numerical results
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Objective properties

We want to obtain a model that satisfies the following properties

1 Can be derived from a variational principle

2 First-order hyperbolic system

3 Can be cast into a Friedrichs symmetric form

4 Total Energy is conserved

5 Compatible with the second law of thermodynamics

6 Gallilean invariant
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Cattaneo’s model

Well-known hyperbolic relaxation of heat equation (1948)

∂θ

∂t
+ div (q) = 0

τ
∂q

∂t
+ q = −K∇θ

No underlying variational principle.

Not Gallilean invariant (fixable)

Generally considered out of the scope of fluid dynamics.

when coupled with compressible Euler equations
1 Not hyperbolic in multi-D.
2 Does not satisfy Clausius-Duhem inequality.
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Cattaneo’s model

ρt + (ρu)x = 0

(ρu)t +
(
ρu2 + p

)
x
= 0

(
ρ

(
ε+

1

2
u2
))

t

+

(
ρu

(
ε+

1

2
u2
))

x

= −(pu)x − qx

τqt + τuqx + q = −κθx

The Gibbs identity implies that

ρθ
dη

dt
= −qx

which can be cast in conservative form as

(ρη)t +
(
ρηu+

q

θ

)
x
= −qθx

θ2
>? 0

not necessarily satisfied because q ̸= −Kθx ∀τ > 0 .
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About Euler-Lagrange equations

Given a Lagrangian, you can derive the Euler-Lagrange equation

L(q, q̇,∇q) =⇒ d

dt

(
∂L
∂q̇

)
+ div

(
∂L
∂∇q

)
=

∂L
∂q

Things are already more complicated for Euler equations

L(ρ,u) =
∫

Ωt

(
1

2
ρ ||u||2 − ρε(ρ, η)

)
dΩ,

δρ = −div (ρδx) , δu =
∂δx

∂t
+

∂δx

∂x
u− ∂u

∂x
δx

After a bit of calculus ⇒ ∂ρu

∂t
+ div

(
ρu⊗ u+ ρ2

∂ε

∂ρ
I

)
= 0
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Euler equations for compressible fluids

∂ρ

∂t
+ div (ρu) = 0, (mass)

∂ρu

∂t
+ div (ρu⊗ u+ p(ρ, η)I) = 0, (momentum)

∂ρη

∂t
+ div (ρηu) = 0. (entropy)

Summing up these equations yields the energy conservation
equation

∂E

∂t
+ div (Eu+ p(ρ, η)u) = 0. (Energy)
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Thermal displacement (Green-Naghdi 1991)
In this paper :

[1] Green, A. E., & Naghdi, P. (1991). A re-examination of the basic postulates
of thermomechanics. Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, 432(1885), 171-194.

The authors introduce an independent auxiliary potential ϕ(x, t) as
a thermal analogue of the kinematic variables such that

ϕ̇(x, t) = −θ(x, t)

One can then write the Lagrangian

L(ρ,u, ϕ̇) =
∫

Ω

(
1

2
ρ ||u||2 − ρε⋆(ρ, ϕ̇)

)
dΩ,

where

ε(ρ, η) = ε⋆(ρ, ϕ̇)− ηϕ̇, with η =
∂ε⋆

∂ϕ̇
.
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Entropy as an Euler-Lagrange equation

Given the Lagrangian

L(ρ,u, ϕ̇) =
∫

Ω

(
1

2
ρ ||u||2 − ρε⋆(ρ, ϕ̇)

)
dΩ,

(
ϕ̇ =

∂ϕ

∂t
+ u · ∇ϕ

)

One obtains

∂ρu

∂t
+ div

(
ρu⊗ u+ ρ2

∂ε⋆

∂ρ
I

)
= 0, (Euler-Lagrange for δx)

∂

∂t
(ρ) + div (ρu) = 0, (Euler-Lagrange for δϕ)
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I

)
= 0, (Euler-Lagrange for δx)

∂

∂t
(ρη) + div (ρηu) = 0, (Euler-Lagrange for δϕ)

∂ρ

∂t
+ div (ρu) = 0 (Constraint)

A similar idea was also used in Lagrangian coordinates in
Peshkov, Pavelka, Grmela and Romenski (2018).
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Extension of Green-Naghdi’s philosophy

Consider the Lagrangian

L(ρ,u,∇ϕ, ϕ̇) =

∫

Ω

(
1

2
ρ ||u||2 − ρε⋆(ρ, ϕ̇)−1

2
α(ρ) ||∇ϕ||2

)
dΩ,

where the function α(ρ) is an arbitrary positive function of density.

∂ρ

∂t
+ div (ρu) = 0,

∂ρu

∂t
+ div (ρu⊗ u+ P I+ α(ρ) ∇ϕ⊗∇ϕ) = 0,

∂ρη

∂t
+ div (ρηu+ α(ρ)∇ϕ) = 0,

where P = ρ2
∂ε⋆

∂ρ
+

1

2
(ρα′(ρ)− α(ρ)) ||∇ϕ||2

Problem : PDE is of second order and depends on ∇ϕ.
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Solution: First-order reduction

Recall that
∂ϕ

∂t
+ u · ∇ϕ = −θ(ρ, η)

∂∇ϕ

∂t
+∇ (u · ∇ϕ+ θ(ρ, η)) = 0

Let us introduce j = ∇ϕ as an independent variable. Then j
satisfies

∂j

∂t
+∇ (u · j+ θ(ρ, η)) = 0

Note that since j = ∇ϕ then j satisfies

∇× j = 0.
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Dissipationless system of equations

∂ρ

∂t
+ div (ρu) = 0,

∂ρu

∂t
+ div (ρu⊗ u+Π) = 0, Π = P (ρ, η, j) I+ α(ρ) j⊗ j

∂j

∂t
+∇ (j · u+ θ(ρ, η)) +

(
∂j

∂x
−
(
∂j

∂x

)T
)
u = 0,

∂ρη

∂t
+ div (ρηu+ α(ρ)j) = 0.

Total energy conservation is obtained as a consequence

∂E

∂t
+ div (Eu+Πu+q) = 0, q = α(ρ) θ(ρ, η) j

Additional term in the energy conservation should be the heat flux.
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Rayleigh dissipation function

∂ρ

∂t
+ div (ρu) = 0,

∂ρu

∂t
+ div (ρu⊗ u+ P (ρ, η, j) I+ α(ρ) j⊗ j) = 0,

∂j

∂t
+∇ (j · u+ θ(ρ, η)) +

(
∂j

∂x
−
(
∂j

∂x

)T
)
u = −∂R

∂j
,

∂ρη

∂t
+ div (ρηu+ α(ρ)j) =

α(ρ)

θ(ρ, η)

∂R
∂j

· j.

Here R is the Rayleigh dissipation function and which we take in
the simplest form as

R =
1

2τ
∥j∥2, ∂R

∂j
=

1

τ
j
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Asymptotic Analysis and compatibility with Fourier’s law

we can expand the variables in power series of τ

ρ = ρ0+O(τ), u = u0+O(τ), η = η0+O(τ), j = j0+τ j1+o(τ),

and we focus on the j equation

τ

(
∂j0
∂t

+
∂j0
∂x

u0 +

(
∂u0

∂x

)T

j0 +∇θ(ρ0, η0)

)
= −(j0+τ j1)+o(τ).

to obtain

j0 = 0, j1 = −∇θ(ρ0, η0), =⇒ j = −τ ∇θ(ρ0, η0) + o(τ).

Under these considerations, the heat flux vector expresses as

q = −τα(ρ0) θ(ρ0, η0)∇θ(ρ0, η0).

compatible with Fourier’s law if

τ =
K

α(ρ0) θ(ρ0, η0)
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and we focus on the j equation

τ

(
∂j0
∂t

+
∂j0
∂x

u0 +

(
∂u0

∂x

)T

j0 +∇θ(ρ0, η0)

)
= −(j0+τ j1)+o(τ).

to obtain

j0 = 0, j1 = −∇θ(ρ0, η0), =⇒ j = −τ ∇θ(ρ0, η0) + o(τ).

Under these considerations, the heat flux vector expresses as

q = −τα(ρ0) θ(ρ0, η0)∇θ(ρ0, η0).

compatible with Fourier’s law if

τ =
K

α(ρ0) θ(ρ0, η0)
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Energy convexity

Total energy is given by

E(ρ,m, s, j) =
1

2ρ
||m||2+ρε(ρ, s/ρ)+

1

2
α(ρ) ||j||2 , m = ρu, s = ρη

Sufficient criterion for energy convexity

if
∂2

∂ρ2

(
1

α(ρ)

)
≤ 0, for ρ > 0.

then E i s also a convex function of Q.

We choose a simple function fitting this criterion

α(ρ) =
κ2

ρ
, κ = cst.

(Another possibility is α(ρ) = cst, taken in Peshkov et.al. (2018))
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Hyperbolicity

system can be cast into quasilinear form

∂V

∂t
+A(V)

∂V

∂x
= 0

where A admits 8 eigenvalues whose expressions are given by





χ1 = u1 −
√

Z1 + Z2,

χ2 = u1 −
√

Z1 − Z2,

χ3−6 = u1,

χ7 = u1 +
√

Z1 − Z2,

χ8 = u1 +
√

Z1 + Z2

where





Z1 =
1

2

(
a2p + a2T + a2j

)
,

Z2 =

√
a4pT +

1

4

(
a2p − a2T

)2
,

a2p =
∂p

∂ρ
, a2T =

κ2

ρ2
∂θ

∂η
,

a4pT =
κ2

ρ2
∂p

∂η

∂θ

∂ρ
, a2j =

2κ2

ρ2
(
j22 + j23

)
.
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Limiting behavior in 1D

Eigenvalues

λ1,4 = u1 ±
√

Z1 + Z2, λ2,3 = u1 ±
√

Z1 − Z2.

In the asymptotic limit κ → ∞ we have

lim
κ→∞

χ1,8 = ±∞, lim
κ→∞

λ2,3 = u1 ± aθ

with aθ being the isothermal sound speed given by

aθ =

√
∂p̃(ρ, θ)

∂ρ
=

√
∂p(ρ, η)

∂ρ
− ∂p(ρ, η)

∂η

∂θ

∂ρ
/
∂θ

∂η
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Dispersion relation comparison
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Figure 1: log-linear plot of the norms of the real part of the phase
velocities (Left) and log-log plot of the attenuation factors (Right) for
both hyperbolic system (Dashed lines) and original Euler-Fourier system
(Solid lines).

ap =
√

∂p
∂ρ , aθ =

√
∂p
∂ρ − ∂p

∂η
∂θ
∂ρ/

∂θ
∂η .
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1D-study: Eigenfields

In one dimension of space, we can write the system as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂ρ

∂ρ

∂x
+

1

ρ

∂p

∂η

∂η

∂x
= 0,

∂η

∂t
+ u

∂η

∂x
+

κ2

ρ2
∂j

∂x
− κ2

ρ3
j
∂ρ

∂x
= 0,

∂j

∂t
+ j

∂u

∂x
+ u

∂j

∂x
+

∂θ

∂ρ

∂ρ

∂x
+

∂θ

∂η

∂η

∂x
= 0.

The eigenvalues are given by



λ1 = u−
√
Y1 + Y2,

λ2 = u−
√
Y1 − Y2,

λ3 = u+
√
Y1 − Y2,

λ4 = u+
√
Y1 + Y2,

where





Y1 =
1
2

(
a2p + a2T

)
,

Y2 =
√

a4pT + Y 2
3 ,

Y3 =
1
2

(
a2p − a2T

)
.
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1D-study: Eigenfields





λ1 = u−
√
Y1 + Y2,

λ2 = u−
√
Y1 − Y2,

λ3 = u+
√
Y1 − Y2,

λ4 = u+
√
Y1 + Y2,

where





Y1 =
1
2

(
a2p + a2T

)
,

Y2 =
√

a4pT + Y 2
3 ,

Y3 =
1
2

(
a2p − a2T

)
.

Nature of the eigenfields (polytropic gas equation of state):

System admits full basis of eigenvectors.

Eigenfields associated to λ1,4 are genuinely non-linear.

Eigenfields associated to λ2,3 are neither genuinely non-linear,
neither linearly degenerate.
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Rankine-Hugoniot conditions

In one dimension of space the RH conditions write

[M] = 0,
[
p+

M2

ρ

]
= 0,

[
M
(
M2

2ρ2
+ ε+

p

ρ
+

1

2

κ2

ρ2
j2
)
+

κ2

ρ
θ j

]
= 0,

[
M j

ρ
+ θ

]
= 0,

where we have defined the mass flux across the discontinuity front
by M = ρ(u−D) and D is the discontinuity speed.
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Non-existence of contact discontinuity

On contact discontinuities, that is for M = 0, one obtains by
direct substitution

[p] = 0,

[
κ2 j

ρ
θ

]
= 0, [θ] = 0.

Since p and θ are continuous across the discontinuity, the density
will be as well. Thus:

[ρ] = 0, [u] = 0, [η] = 0, [j] = 0,

Therefore solution is continuous: no contact discontinuities are
admissible in this case.
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Hugoniot Locus (polytropic gas equation of state)

0

1

2

3

4

5

0.7 1 1.3 1.6

p̃

ṽ

p̃+

p̃−

Study of the Hugoniot curves shows interesting possible solutions:

Expansion shocks,

Compression fans,

Compound shocks.
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Compound shocks

t

x

dx
dt

= D⋆

︷ ︸︸ ︷
compression fan

Figure 2: Schematic representation of the wave pattern in the x− t
plane, for a compound shock splitting solution. The shock propagates to
the right, followed by a right facing compression fan.
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Recovery of Fourier law: Shock tube problem
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Figure 3: Shock tube with heat conduction. The solution is given at final
time t = 0.2. Parameters: CFL = 0.9, γ = 5/3, cV = 3/2, K = 10−3.
Relaxation time is taken as τ = K

α(ρ0) θ(ρ0,η0)
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Expansion shock solution
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Figure 4: Numerical result for an expansion shock solution on the
computational domain [0, 1], discretized over N = 10000 cells displayed
at final time t = 0.5. Parameters: CFL = 0.9, γ = 2, cV = 1, κ = 0.8.
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Compression fan
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Figure 5: Numerical result for a compression fan solution. Parameters:
CFL = 0.9, γ = 2, cV = 1, κ = 0.8
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Compound shock solution
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Figure 6: Compound shock plotted as a function of the self-similar
coordinate x̆ = (x−D⋆t)/t. CFL = 0.9, γ = 2, cV = 1, κ = 1.3.
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Conclusion and Perspectives

Heat conduction can be modeled by hyperbolic equations
derived from variational principles.

Entropy equation can be derived as an Euler-Lagrange
equation.

Fourier’s law can be obtained as asymptotic behavior.

Perspectives

Multi-D simulations (accounting for curl-involutions, etc)

Rigorous Justification of the relaxation limit

Further optimization at the numerical level (semi-implicit
discretization, etc )

Further study of the Riemann problem.
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Thank you for your attention !
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