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Classes of partial derivative equations

Hyperbolic equations (e.g utt = cuxx)

Wave-like behaviour.

perturbations propagate at finite speeds.

Well-posed equations.

parabolic equations (e.g ut = αuxx)

diffusive processes.

perturbations propagate at infinite speeds.

Elliptic equations (e.g uxx = 0)

mostly for steady states.

Always smooth solutions.
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Some fluid dynamics models

Euler Equations{
∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = 0

Navier-Stokes equations{
∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = µ∇2u

Euler-Korteweg equations (constant capillarity){
∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = σρ∇(∆ρ)
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Euler-Korteweg type systems

{
∂tρ+ div(ρu) = 0
∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = ρ∇

(
K (ρ)∆ρ+ 1

2K
′(ρ)|∇ρ|2

)
K (ρ) = σ : constant capillarity

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = σρ∇ (∆ρ)

K (ρ) = 1
4ρ : Quantum capillarity / DNLS equation

∂t(ρu) + div(ρu⊗ u + 1
4ρ∇ρ⊗∇ρ) +∇

(
ρ2

2 −
1
4 ∆ρ

)
= 0

Definitely not hyperbolic and admits high order derivatives.

Ph.D Objective ⇒ Make it first order hyperbolic !
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Outline

1 Defocusing Nonlinear Schrödinger equation

2 Augmented Lagrangian approach

3 Numerical results

4 Conclusions - Perspectives
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The Non-Linear Schrödinger equation

iεψt +
ε2

2
∆ψ − f

(
|ψ|2

)
ψ = 0 ; ε =

~
m

A wide range of applications: Nonlinear optics, quantum
fluids, surface gravity waves

Advantage : the equation is integrable. [Zakharov,Manakov
1974]

Construction of analytical solutions is possible.

In what follows and for simplicity we take ε = 1 and consider

the cubic NLS equation f
(
|ψ|2

)
= |ψ|2
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The defocusing NLS equation

iψt +
1

2
∆ψ − |ψ|2 ψ = 0

The Madelung transform

ψ(x, t) =
√
ρ(x, t)e iθ(x,t) u = ∇θ{

ρt + div(ρu) = 0

(ρu)t + div (ρu⊗ u + Π) = 0

with : Π =

(
ρ2

2
− 1

4
∆ρ

)
Id +

1

4ρ
∇ρ⊗∇ρ
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Lagrangian formulations

A Lagrangian :

L(ρ,u) =

∫
Ωt

(
ρ |u|2

2
− ρe(ρ)

)
dΩt

A Constraint :
ρt + div(ρu) = 0

=⇒ The corresponding Euler-Lagrange equation:

(ρu)t + div (ρu⊗ u + p(ρ)) = 0; p(ρ) = ρ2e ′(ρ)
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Main Approach

(I) Original NLS Equations

(II) Original NLS Lagrangian (III) Modified Lagrangian for NLS

(IV) New system of equations
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A Lagrangian for DNLS equation


ρt + div(ρu) = 0

(ρu)t + div

(
ρu⊗ u +

(
ρ2

2
− 1

4
∆ρ

)
Id +

1

4ρ
∇ρ⊗∇ρ

)
= 0

L(u, ρ,∇ρ) =

∫
Ωt

(
ρ
|u|
2

2

− ρ2

2
− 1

4ρ

|∇ρ|
2

2
)
dΩt

Energy conservation law:

∂E

∂t
+ div(Eu + Πu− 1

4
ρ̇∇ρ) = 0 ; ρ̇ = ρt + u · ∇ρ

where

E = ρ
|u|
2

2

+
ρ2

2
+

1

4ρ

|∇ρ|
2

2
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Augmented Lagrangian approach

The objective

Obtain a new Lagrangian whose Euler-Lagrange equations :

are hyperbolic

approximate Schrödinger’s equation in a certain limit

The idea

Decouple ∇ρ from u and ρ, have it as an independent
variable.
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Love affairs

Mass conservation : ρt + div(ρu) = 0

ρ←→ u (sweet love ♥)

Love =Nice equations

ρ ←→ u

∇

Nasty triangular = Ugly equations

Solution: Call η, the twin brother of ρ to the rescue:

ρ←→ u ♥ η ←→ ∇η ♥

Twice the love = Even better equations!
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Augmented Lagrangian approach : Application to DNLS

DNLS Lagrangian :

L(u, ρ,∇ρ) =

∫
Ωt

(
ρ
|u|
2

2

− ρ2

2
− 1

4ρ

|∇ρ|
2

2
)
dΩt

’Augmented’ Lagrangian approach [Favrie, Gavrilyuk, 2017]

L̃(u, ρ, η,∇η)

L̃ =

∫
Ωt

(
ρ
|u|
2

2

− ρ2

2
− 1

4ρ

|∇η|
2

2

− λ

2ρ
(η − ρ)2

)
dΩt

λ

2
ρ

(
η

ρ
− 1

)2

: Penalty

βρ

2
η̇2 : For regularity
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Augmented Lagrangian approach : Application to DNLS

DNLS Lagrangian :

L(u, ρ,∇ρ) =

∫
Ωt

(
ρ
|u|
2

2

− ρ2

2
− 1

4ρ

|∇ρ|
2

2
)
dΩt

’Augmented’ Lagrangian approach [Favrie, Gavrilyuk, 2017]

L̃(u, ρ, η,∇η, η̇)

L̃ =

∫
Ωt

(
ρ
|u|
2

2

− ρ2

2
− 1

4ρ

|∇η|
2

2

− λ

2ρ
(η − ρ)2 +

βρ

2
η̇2

)
dΩt

λ

2
ρ

(
η

ρ
− 1

)2

: Penalty
βρ

2
η̇2 : For regularity
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Augmented system Euler-Lagrange equations

The Augmented Lagrangian : p = ∇η and w = η̇.

L̃ =

∫
Ωt

(
ρ
|u|
2

2

+
βρ

2
w2 − ρ2

2
− 1

4ρ

|p|
2

2

−λ
2
ρ

(
η

ρ
− 1

)2
)
dΩt

The constraint :
ρt + div(ρu) = 0

=⇒ We apply Hamilton’s principle :

a =

∫ t1

t0

L̃ dt =⇒ δa = 0
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Types of variations

Two types of variations will be considered :

L̃(

I︷ ︸︸ ︷
u, ρ, η̇, η,∇η︸ ︷︷ ︸

II

) η̇ = ηt + u · ∇η

Type I : Virtual displacement of the continuum:

δ̂ρ = −div(ρδx) δ̂u = δ̇x−∇u · δx δη̇ = δ̂u · ∇η

Type II : Variations with respect to η

δ∇η = ∇δη δη̇ = (δη)t + u · ∇δη
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Augmented system Euler-Lagrange Equations

Type I : Virtual displacement of the continuum:

(ρu)t + div (ρu⊗ u + P) = 0

with : P =

(
ρ2

2
− 1

4ρ
|p|2 + ηλ(1− η

ρ
)

)
Id +

1

4ρ
p⊗ p

Type II : Variations with respect to η:

(ρw)t + div

(
ρwu− 1

4ρβ
p

)
=
λ

β

(
1− η

ρ

)
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Closure of the system

1. Definition of w = η̇

w = η̇ = ηt + u · ∇η =⇒ (ρη)t + div(ρηu) = ρw

2. Evolution of p = ∇η

∇w = ∇(ηt + u · ∇η)

= (∇η)t +∇(u · ∇η)

=⇒ (∇η)t +∇(u · ∇η − w) = 0

=⇒ pt + div((p · u− w)Id) = 0

2’. Initial condition for p : pt=0 = (∇η)t=0
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The full Augmented system

ρt + div(ρu) = 0

(ρu)t + div (ρu⊗ u + P) = 0

(ρη)t + div(ρηu) = ρw

(ρw)t + div
(
ρwu− 1

4ρβp
)

= λ
β

(
1− η

ρ

)
pt + div ((p · u− w) Id) = 0; curl(p) = 0

P =

(
ρ2

2
− 1

4ρ
|p|2 + ηλ(1− η

ρ
)

)
Id +

1

4ρ
p⊗ p

Closed system (5 independent equations for 5 variables.

What about hyperbolicity ? it is unconditionally hyperbolic.

Values of λ and β ?
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Numerical scheme : Hyperbolic step

1-d system of equations to solve :

∂U

∂t
+
∂F

∂x
= S(U)

Hyperbolic part:

1 Godunov scheme: Un+1
i = Un

i −
∆t
∆x

(
F∗
i+ 1

2

− F∗
i− 1

2

)
2 Riemann Solver: Rusanov.

Fi+ 1
2

=
1

2

(
F(Un

i+1)− F(Un
i )
)
− 1

2
κn
i+ 1

2

(
Un

i+1 −Un
i

)
where κn

i+ 1
2

is obtained by using the Davis approximation :

κni+1/2 = max
j

(|cj(Un
i )|, |cj(Un

i+1)|),

where cj are the eigenvalues of the Augmented system.
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Numerical scheme : ODE step

Reduced to a second order ODE with constant coefficients which
can be solved exactly in our case.{
dρ

dt
= 0;

dρu

dt
= 0;

dp

dt
= 0

dρη

dt
= ρw

dρw

dt
=
λ

β

(
1− η

ρ

)
Therefore, the exact solution is given by :

ρn+1 = ρ̄n un+1 = ūn pn+1 = p̄n

ηn+1 = ρ̄n + (η̄n − ρ̄n) cos(Ω∆t) +
w̄n

Ω
sin(Ω∆t)

wn+1 = Ω(ρ̄n − η̄n) sin(Ω∆t) + w̄ncos (Ω∆t)

where Ω =
λ

βρ2
.
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A brief introduction to DSWs

τ2 τ1τ3τ4
τ=x/t

ρ0

ρR

ρL

ρ

Figure 1: Asymptotic profile of the solution to NLS equation (continuous
line) for the Riemann problem ρL = 2, ρR = 1 , uL = uR = 0.
Oscillations shown at t=70
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DSW Numerical results : ρ

x/t

ρ

τ
4

τ
3

τ
2

τ
1

ρ
L

ρ
R

ρ
0

x/t

numerical simulation
Whitham envelope

Figure 2: Comparison of the numerical result ρ(x , t) = f (x/t) (blue line)
with the asymptotic profile of the oscillations from Whitham’s theory of
modulations. t=70
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DSW Numerical results : u

x/t

u

τ
4

τ
3

τ
2

τ
1

u
L

u
R

u
0

numerical simulation
Whitham envelope

Figure 3: Comparison of the numerical result u(x , t) = f (x/t) (blue line)
with the asymptotic profile of the oscillations from Whitham’s theory of
modulations. t=70
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Conclusions - perspectives

Conclusions :

An approximate first order hyperbolic model for the
defocusing nonlinear Schrödinger equation based on an
augmented Lagrangian method.

Tests were made for a non stationary solution (DSWs).

Perspectives (already done) :

Obtained results for thin film flows with surface tension
(another system of the Euler-Korteweg type)

A more suitable numerical scheme (2nd order IMEX)

Perspectives (yet to be done, actually never ...) :

Extension to the multidimensional case.

Proper development of the boundary conditions.

Further optimization of the numerical resolution.
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Thank you for your attention :) !

F.A.Q :

Obtaining the red envelope for the oscillatory wave train.

What happens if you take a real discontinuity as initial
condition ?

How does the penalty method work.

How we obtain both Euler Lagrange equations

what boundary conditions do we use ?

Do we have hyperbolicity in the multidimensional case ?

Are the schemes we use Asymptotic Preserving ?

Ensuring the curl-free constraint on p in multi-D.
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One-Dimensional case : Hyperbolicity

In order to study the hyperbolicity of this system, we write it in
quasi-linear form :

∂U

∂t
+ A(U)

∂U

∂x
= q

where:

U =
(
ρ, u,w , p, η

)T
q =

(
0, 0, 1λ

βρ

(
1− η

ρ

)
, 0,w

)T

A(U) =


u ρ 0 0 0

1 + λη2

ρ3 u 0 0 λ
ρ

(
1− 2η

ρ

)
p

4βρ3 0 u − 1
4βρ2 0

0 p −1 u 0
0 0 0 0 u
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One-Dimensional case : Hyperbolicity

The eigenvalues c of the matrix A are :

c = u, (c − u)2
± =

(
1

4βρ2 + ρ+ λη2

ρ2

)
±
√(
− 1

4βρ2 + ρ+ λη2

ρ2

)2

2
.

The right-hand side is always positive. However, the roots can be
multiple if

1

4βρ2
= ρ+

λη2

ρ2
.

In the case of multiple roots : We still get five linear independent
eigenvectors. =⇒ the system is always hyperbolic
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Values of λ and β

Values have to be assigned : a criterion is needed.

We can base this choice, for example, on the dispersion
relation.

Original DNLS dispersion relation

c2
p = ρ0 +

k2

4

Augmented DNLS dispersion relation

(cp)2 =

1

4βρ2
0

+ ρ0 + λ +
λ

βρ2
0k

2
−

√(
1

4βρ2
0

+ ρ0 + λ +
λ

βρ2
0k

2

)2

− 4

(
λ

βρ0k2
+
ρ0 + λ

4βρ2
0

)
2
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Example estimation

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12 k

cp

λ=10

λ=100
λ=1000

Figure 4: The dispersion relation cp = f (k) for the original model
(continuous line) and the dispersion relation for the Augmented model
(dashed lines) for different values of λ and for β = 10−4
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vanishing oscillations at the left constant state

x

ρ

τ
4

τ
3

ρL

ρ0
10

20

30

40

50

0 25 50 75 100 125 150 175 t

at3/2

τ

t=40s

t=60s

t=20s

Figure 5: Vanishing oscillations at the vicinity of τ = τ4. amplitude
decreases as ∝ t−1/2.
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