Publications
Articles in peer-reviewed journals Link to heading
- A first-order hyperbolic reformulation of the Cahn-Hilliard equation (2024)Dhaouadi, F., Dumbser, M. and Gavrilyuk, S.arXiv:2408.03862.In review preprint
- An exactly curl-free finite-volume scheme for a hyperbolic compressible barotropic two-phase model (2024)Río-Martín, L., Dhaouadi, F. and Dumbser, M.Journal of Scientific Computing 102 (1), 13preprint journal Accepted Copy
- An Eulerian hyperbolic model for heat transfer derived via Hamilton’s principle: analytical and numerical study (2024)Dhaouadi, F. and Gavrilyuk, S.Proceedings of the Royal Society A, 480(2283), p.20230440.preprint journal Accepted Copy Code
- A structure-preserving finite volume scheme for a hyperbolic reformulation of the Navier–Stokes–Korteweg equations (2023)Dhaouadi, F. and Dumbser, M., 2023Mathematics, 11(4), p.876.journal Accepted Copy
- A first order hyperbolic reformulation of the Navier-Stokes-Korteweg system based on the GPR model and an augmented Lagrangian approach (2022)Dhaouadi, F. and Dumbser, M., 2023Journal of Computational Physics, 470, p.111544.journal Accepted Copy
- Hyperbolic relaxation models for thin films down an inclined plane (2022)Dhaouadi, F., Gavrilyuk, S. and Vila, J.P.Applied Mathematics and Computation, 433, p.127378.journal Accepted Copy
- Stability theory for some scalar finite difference schemes : Validity of the modified equations approach (2021)Dhaouadi F, Duval E, Tkachenko S,Vila J-P.ESAIM: Proceedings and Surveys 70, 124-136preprint journal Accepted Copy
- Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation (2018)Dhaouadi F, Favrie N, Gavrilyuk S.Stud Appl Math. 2018;1–23.preprint journal Accepted Copy
Dissemination activities Link to heading
- Jun. 2024, Strasbourg, France, Sixth Workshop on Compressible Multiphase Flows Slides
A hyperbolic approximation of the Cahn-Hilliard equation - Apr. 2024, Trento, Italy, PROHYP 2024 Slides
An Eulerian hyperbolic model for heat transfer derived via Hamilton’s principle - Mar. 2024, Stuttgart, Germany, DROPIT Seminar Slides
A structure-preserving scheme for a hyperbolic approximation to the NSK equations - Jan. 2024, Concepcion, Chile, WONAPDE 2024 Slides
Hyperbolic approximation and numerical methods for the Navier-Stokes-Korteweg equations - Sep. 2023, Hirschegg, Austria, Hirschegg Workshop 2023 Slides
A structure-preserving scheme for a hyperbolic approximation to the NSK equations - Jun. 2023, Bordeaux, France, NUMHYP 2023 Poster
A hyperbolic model for heat transfer in compressible flows - Mar. 2023, Marseille, France, GdT Hyperbo Slides
A first-order hyperbolic reformulation of the Navier-Stokes-Korteweg equations - Aug. 2022, Zurich, Switzerland, MULTIMAT 2022 Slides
A Hyperbolic reformulation of the Navier-Stokes-Korteweg equations - Jul. 2022, Zaraogza, Spain, CEDYA 2022 Slides
A Hyperbolic reformulation of the Navier-Stokes-Korteweg equations - Mar. 2022, Marseille, France, PROHYP 2022 Slides
A Hyperbolic reformulation of the Navier-Stokes-Korteweg equations - Feb. 2022, Trento, Italy, Trento Winter school on advanced numerical methods Slides
Hyperbolic formulations of dispersive equations in continuum mechanics - Jul. 2021, Trento, Italy, NUMHYP 2021 Slides
A hyperbolic augmented model for the Nonlinear Schrödinger equation - Jun. 2020, ICMS, Edinburgh (online), Waves in one World Seminar Slides Recording
First Order hyperbolic equations approximating the Defocusing NonLinear Schrödinger equation. - Feb. 2020, Marseille, France, IUSTI Student Seminar Slides
A hyperbolic augmented model for the NonLinear Schrödinger equation. - Aug. 2019, Marseille, France, CEMRACS 2019 Slides
Stability theory for finite-difference schemes using modified equations. - Aug. 2019, Marseille, France, CEMRACS 2019 Slides
Augmented Lagrangian approach for the defocusing non-linear Schrödinger Equation. - May 2019, Minho, Portugal, SHARK-FV 2019 Slides Poster
A hyperbolic augmented model for thin film flows. - May 2018, Minho, Portugal, SHARK-FV 2018 Slides
Extended Lagrangian approach for the defocusing non-linear Schrödinger equation.